summaryrefslogtreecommitdiffstats
path: root/dpd/src/MER.py
blob: 393e55cb8fe3a56ab2309fd5709e4979c5305236 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-
#
# Modulation Error Rate
#
# http://www.opendigitalradio.org
# Licence: The MIT License, see notice at the end of this file

import datetime
import os
import logging
try:
    logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename)
except:
    logging_path = "/tmp/"

import src.const
import numpy as np
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt

class MER:
    def __init__(self, c):
        self.c = c

        self.plot = c.MER_plot

    def _calc_spectrum(self, tx):
        fft = np.fft.fftshift(np.fft.fft(tx))
        return np.delete(fft[self.c.FFT_start:self.c.FFT_end],
                         self.c.FFT_delete)

    def _split_in_carrier(self, x, y):
        if 0.5 < np.mean((np.abs(np.abs(x) - np.abs(y)) /
                              np.abs(np.abs(x) + np.abs(y)))):
            # Constellation points are axis aligned on the Im/Re plane
            x1 = x[(y < x) & (y > -x)]
            y1 = y[(y < x) & (y > -x)]

            x2 = x[(y > x) & (y > -x)]
            y2 = y[(y > x) & (y > -x)]

            x3 = x[(y > x) & (y < -x)]
            y3 = y[(y > x) & (y < -x)]

            x4 = x[(y < x) & (y < -x)]
            y4 = y[(y < x) & (y < -x)]
        else:
            # Constellation points are on the diagonal or Im/Re plane
            x1 = x[(+x > 0) & (+y > 0)]
            y1 = y[(+x > 0) & (+y > 0)]

            x2 = x[(-x > 0) & (+y > 0)]
            y2 = y[(-x > 0) & (+y > 0)]

            x3 = x[(-x > 0) & (-y > 0)]
            y3 = y[(-x > 0) & (-y > 0)]

            x4 = x[(+x > 0) & (-y > 0)]
            y4 = y[(+x > 0) & (-y > 0)]
        return (x1, y1), (x2, y2), (x3, y3), (x4, y4)

    def _calc_mer_for_isolated_constellation_point(self, x, y):
        """Calculate MER for one constellation point"""
        x_mean = np.mean(x)
        y_mean = np.mean(y)

        U_RMS = np.sqrt(x_mean ** 2 + y_mean ** 2)
        U_ERR = np.mean(np.sqrt((x - x_mean) ** 2 + (y - y_mean) ** 2))
        MER = 20 * np.log10(U_ERR / U_RMS)

        return x_mean, y_mean, U_RMS, U_ERR, MER

    def calc_mer(self, tx, debug_name=""):
        assert tx.shape[0] == self.c.T_U,\
                "Wrong input length"

        spectrum = self._calc_spectrum(tx)

        if self.plot:
            dt = datetime.datetime.now().isoformat()
            fig_path = logging_path + "/" + dt + "_MER" + debug_name + ".svg"

        MERs = []
        for i, (x, y) in enumerate(self._split_in_carrier(
                np.real(spectrum),
                np.imag(spectrum))):
            x_mean, y_mean, U_RMS, U_ERR, MER =\
                self._calc_mer_for_isolated_constellation_point(x, y)
            MERs.append(MER)

            tau = np.linspace(0, 2 * np.pi, num=100)
            x_err = U_ERR * np.sin(tau) + x_mean
            y_err = U_ERR * np.cos(tau) + y_mean

            if self.plot:
                ax = plt.subplot(221 + i)
                ax.scatter(x, y, s=0.2, color='black')
                ax.plot(x_mean, y_mean, 'p', color='red')
                ax.plot(x_err, y_err, linewidth=2, color='blue')
                ax.text(0.1, 0.1, "MER {:.1f}dB".format(MER), transform=ax.transAxes)
                ax.set_xlabel("Real")
                ax.set_ylabel("Imag")
                ylim = ax.get_ylim()
                ax.set_ylim(ylim[0] - (ylim[1] - ylim[0]) * 0.1, ylim[1])

        if self.plot:
            plt.tight_layout()
            plt.savefig(fig_path)
            plt.show()
            plt.close()

        MER_res = 20 * np.log10(np.mean([10 ** (MER / 20) for MER in MERs]))
        return MER_res

# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.