1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
# -*- coding: utf-8 -*-
#
# DPD Calculation Engine,
# Extract statistic from data to use in Model
#
# http://www.opendigitalradio.org
# Licence: The MIT License, see notice at the end of this file
import numpy as np
import pickle
import matplotlib.pyplot as plt
import datetime
import os
import logging
logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename)
def _check_input_extract(tx_dpd, rx_received):
# Check data type
assert tx_dpd[0].dtype == np.complex64, \
"tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype)
assert rx_received[0].dtype == np.complex64, \
"rx_received is not complex64 but {}".format(rx_received[0].dtype)
# Check if signals have same normalization
normalization_error = np.abs(np.median(np.abs(tx_dpd)) -
np.median(np.abs(rx_received))) / (
np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
assert normalization_error < 0.01, "Non normalized signals"
class ExtractStatistic:
"""Calculate a low variance RX value for equally spaced tx values
of a predefined range"""
def __init__(self,
c,
plot=False):
self.c = c
self.tx_boundaries = np.linspace(c.ES_start, c.ES_end, c.ES_n_bins + 1)
self.n_per_bin = c.ES_n_per_bin
self.rx_values_lists = []
for i in range(c.ES_n_bins):
self.rx_values_lists.append([])
self.tx_values_lists = []
for i in range(c.ES_n_bins):
self.tx_values_lists.append([])
self.tx_values = self._tx_value_per_bin()
self.rx_values = []
for i in range(c.ES_n_bins):
self.rx_values.append(None)
self.plot = plot
def _plot_and_log(self):
if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot:
dt = datetime.datetime.now().isoformat()
fig_path = logging_path + "/" + dt + "_ExtractStatistic.png"
sub_rows = 2
sub_cols = 1
fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
i_sub = 0
i_sub += 1
ax = plt.subplot(sub_rows, sub_cols, i_sub)
ax.plot(self.tx_values, self.rx_values,
label="Estimated Values",
color="red")
for i, tx_value in enumerate(self.tx_values):
rx_values = self.rx_values_lists[i]
ax.scatter(np.ones(len(rx_values)) * tx_value,
np.abs(rx_values),
s=0.1,
color="black")
ax.set_title("Extracted Statistic")
ax.set_xlabel("TX Amplitude")
ax.set_ylabel("RX Amplitude")
ax.set_ylim(0, 0.8)
ax.set_xlim(0, 1.1)
ax.legend(loc=4)
num = []
for i, tx_value in enumerate(self.tx_values):
rx_values = self.rx_values_lists[i]
num.append(len(rx_values))
i_sub += 1
ax = plt.subplot(sub_rows, sub_cols, i_sub)
ax.plot(num)
ax.set_xlabel("TX Amplitude")
ax.set_ylabel("Number of Samples")
ax.set_ylim(0, self.n_per_bin * 1.2)
fig.tight_layout()
fig.savefig(fig_path)
fig.clf()
pickle.dump(self.rx_values_lists, open("/tmp/rx_values", "wb"))
pickle.dump(self.tx_values, open("/tmp/tx_values", "wb"))
def _rx_value_per_bin(self):
rx_values = []
for values in self.rx_values_lists:
rx_values.append(np.mean(np.abs(values)))
return rx_values
def _tx_value_per_bin(self):
tx_values = []
for start, end in zip(self.tx_boundaries, self.tx_boundaries[1:]):
tx_values.append(np.mean((start, end)))
return tx_values
def extract(self, tx_dpd, rx):
_check_input_extract(tx_dpd, rx)
tx_abs = np.abs(tx_dpd)
for i, (tx_start, tx_end) in enumerate(zip(self.tx_boundaries, self.tx_boundaries[1:])):
mask = (tx_abs > tx_start) & (tx_abs < tx_end)
n_add = max(0, self.n_per_bin - len(self.rx_values_lists[i]))
self.rx_values_lists[i] += \
list(rx[mask][:n_add])
self.tx_values_lists[i] += \
list(tx_dpd[mask][:n_add])
self.rx_values = self._rx_value_per_bin()
self.tx_values = self._tx_value_per_bin()
self._plot_and_log()
n_per_bin = [len(values) for values in self.rx_values_lists]
return np.array(self.tx_values, dtype=np.float32), np.array(self.rx_values, dtype=np.float32), n_per_bin
# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
|