summaryrefslogtreecommitdiffstats
path: root/dpd/show_spectrum.py
blob: 0ae24c2c1f39689a95a46236a5975760376704a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# This is an example tool that shows how to connect to ODR-DabMod's dpd TCP server
# and get samples from there.
#
# Since the TX and RX samples are not perfectly aligned, the tool has to align them properly,
# which is done in two steps: First on sample-level using a correlation, then with subsample
# accuracy using a FFT approach.
#
# It requires SciPy and matplotlib.
#
# Copyright (C) 2017 Matthias P. Braendli
# http://www.opendigitalradio.org
# Licence: The MIT License, see notice at the end of this file

import sys
import socket
import struct
import numpy as np
import matplotlib.pyplot as pp
from matplotlib.animation import FuncAnimation
import argparse
from scipy.misc import imsave

SIZEOF_SAMPLE = 8 # complex floats

# Constants for TM 1
NbSymbols = 76
NbCarriers = 1536
Spacing = 2048
NullSize = 2656
SymSize = 2552
FicSizeOut = 288

def main():
    parser = argparse.ArgumentParser(description="Plot the spectrum of ODR-DabMod's DPD feedback")
    parser.add_argument('--samps', default='10240', help='Number of samples to request at once',
            required=False)
    parser.add_argument('--port', default='50055',
            help='port to connect to ODR-DabMod DPD (default: 50055)',
            required=False)
    parser.add_argument('--animated', action='store_true', help='Enable real-time animation')
    parser.add_argument('--constellation', action='store_true', help='Draw constellaton plot')
    parser.add_argument('--samplerate', default='8192000', help='Sample rate',
            required=False)

    cli_args = parser.parse_args()

    if cli_args.constellation:
        plot_constellation_once(cli_args)
    elif cli_args.animated:
        plot_spectrum_animated(cli_args)
    else:
        plot_spectrum_once(cli_args)

def recv_exact(sock, num_bytes):
    bufs = []
    while num_bytes > 0:
        b = sock.recv(num_bytes)
        if len(b) == 0:
            break
        num_bytes -= len(b)
        bufs.append(b)
    return b''.join(bufs)

def get_samples(port, num_samps_to_request):
    """Connect to ODR-DabMod, retrieve TX and RX samples, load
    into numpy arrays, and return a tuple
    (tx_timestamp, tx_samples, rx_timestamp, rx_samples)
    where the timestamps are doubles, and the samples are numpy
    arrays of complex floats, both having the same size
    """

    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.connect(('localhost', port))

    print("Send version");
    s.sendall(b"\x01")

    print("Send request for {} samples".format(num_samps_to_request))
    s.sendall(struct.pack("=I", num_samps_to_request))

    print("Wait for TX metadata")
    num_samps, tx_second, tx_pps = struct.unpack("=III", recv_exact(s, 12))
    tx_ts = tx_second + tx_pps / 16384000.0

    if num_samps > 0:
        print("Receiving {} TX samples".format(num_samps))
        txframe_bytes = recv_exact(s, num_samps * SIZEOF_SAMPLE)
        txframe = np.fromstring(txframe_bytes, dtype=np.complex64)
    else:
        txframe = np.array([], dtype=np.complex64)


    print("Wait for RX metadata")
    rx_second, rx_pps = struct.unpack("=II", recv_exact(s, 8))
    rx_ts = rx_second + rx_pps / 16384000.0

    if num_samps > 0:
        print("Receiving {} RX samples".format(num_samps))
        rxframe_bytes = recv_exact(s, num_samps * SIZEOF_SAMPLE)
        rxframe = np.fromstring(rxframe_bytes, dtype=np.complex64)
    else:
        rxframe = np.array([], dtype=np.complex64)

    print("Disconnecting")
    s.close()

    return (tx_ts, txframe, rx_ts, rxframe)

def recv_rxtx(port, num_samps_to_request):
    tx_ts, txframe, rx_ts, rxframe = get_samples(port, num_samps_to_request)

    # convert to complex doubles for more dynamic range
    txframe = txframe.astype(np.complex128)
    rxframe = rxframe.astype(np.complex128)

    print("Received {} & {} frames at {} and {}".format(
        len(txframe), len(rxframe), tx_ts, rx_ts))
    return tx_ts, txframe, rx_ts, rxframe

def get_spectrum(port, num_samps_to_request):
    tx_ts, txframe, rx_ts, rxframe = recv_rxtx(port, num_samps_to_request)

    print("Calculate TX and RX spectrum assuming 8192000 samples per second")
    tx_spectrum = np.fft.fftshift(np.fft.fft(txframe, fft_size))
    tx_power = 20*np.log10(np.abs(tx_spectrum))

    rx_spectrum = np.fft.fftshift(np.fft.fft(rxframe, fft_size))
    rx_power = 20*np.log10(np.abs(rx_spectrum))
    return tx_power, rx_power

def remove_guard_intervals(frame, options):
    """Remove the cyclic prefix. The frame needs to be aligned to the
    end of the transmission frame. Transmission Mode 1 is assumed"""
    oversample = int(int(options.samplerate) / 2048000)

    # From the end, take 2048 samples, then skip 504 samples
    frame = frame[::-1]

    stride_len = Spacing * oversample
    stride_advance = SymSize * oversample

    # Truncate the frame to an integer length of strides
    newlen = len(frame) - (len(frame) % stride_advance)
    print("Truncating frame from {} to {}".format(len(frame), newlen))
    frame = frame[:newlen]

    # Remove the cyclic prefix
    frame = frame.reshape(-1, stride_advance)[:,:stride_len].reshape(-1)

    # Reverse again
    return frame[::-1]


def plot_constellation_once(options):
    port = int(options.port)
    num_samps_to_request = int(options.samps)

    tx_ts, txframe, rx_ts, rxframe = recv_rxtx(port, num_samps_to_request)

    frame = remove_guard_intervals(txframe, options)

    oversample = int(int(options.samplerate) / 2048000)

    n = Spacing * oversample # is also number of samples per symbol
    if len(frame) % n != 0:
        raise ValueError("Frame length doesn't contain exact number of symbols")
    num_syms = int(len(frame) / n)
    print("frame {} has {} symbols".format(len(frame), num_syms))
    spectrums = np.array([np.fft.fftshift(np.fft.fft(frame[n*i:n*(i+1)], n)) for i in range(num_syms)])
    #imsave("spectrums.png", np.abs(spectrums))

    # Only take bins that are supposed to contain energy
    #TODO this is only valid for 2048000 sample rate!
    spectrums = np.concatenate([spectrums[...,256:1024], spectrums[...,1025:1793]], axis=1)

    sym_indices = (np.tile(np.arange(num_syms-1).reshape(num_syms-1,1), (1,NbCarriers)) +
                   np.tile(np.linspace(-0.25, 0.25, NbCarriers), (num_syms-1, 1) ) )
    sym_indices = sym_indices.reshape(-1)
    diff_angles = np.mod(np.diff(np.angle(spectrums, deg=1), axis=0), 360)
    #sym_points = spectrums[:-1].reshape(-1)
    # Set amplitude and phase of low power points to zero, avoid cluttering diagram
    #sym_points[np.abs(sym_points) < np.mean(np.abs(sym_points)) * 0.1] = 0

    print("ix {}  spec {} da {}".format(
        sym_indices.shape, spectrums.shape, diff_angles.shape))

    fig = pp.figure()

    fig.suptitle("Constellation")
    ax1 = fig.add_subplot(111)
    ax1.set_title("TX")
    ax1.scatter(sym_indices, diff_angles.reshape(-1), alpha=0.1)

    pp.show()

fft_size = 4096

def plot_spectrum_once(options):
    port = int(options.port)
    num_samps_to_request = int(options.samps)
    freqs = np.fft.fftshift(np.fft.fftfreq(fft_size, d=1./int(options.samplerate)))

    tx_power, rx_power = get_spectrum(port, num_samps_to_request)
    fig = pp.figure()

    fig.suptitle("TX and RX spectrum")
    ax1 = fig.add_subplot(211)
    ax1.set_title("TX")
    ax1.plot(freqs, tx_power, 'r')
    ax2 = fig.add_subplot(212)
    ax2.set_title("RX")
    ax2.plot(freqs, rx_power, 'b')
    pp.show()

def plot_spectrum_animated(options):
    port = int(options.port)
    num_samps_to_request = int(options.samps)
    freqs = np.fft.fftshift(np.fft.fftfreq(fft_size, d=1./int(options.samplerate)))

    fig, axes = pp.subplots(2, sharex=True)
    line1, = axes[0].plot(freqs, np.ones(len(freqs)), 'r', animated=True)
    axes[0].set_title("TX")
    line2, = axes[1].plot(freqs, np.ones(len(freqs)), 'b', animated=True)
    axes[1].set_title("RX")
    lines = [line1, line2]

    axes[0].set_ylim(-30, 50)
    axes[1].set_ylim(-60, 40)

    def update(frame):
        tx_power, rx_power = get_spectrum(port, num_samps_to_request)

        lines[0].set_ydata(tx_power)
        lines[1].set_ydata(rx_power)
        return lines

    ani = FuncAnimation(fig, update, blit=True)
    pp.show()

main()

# The MIT License (MIT)
#
# Copyright (c) 2017 Matthias P. Braendli
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.