summaryrefslogtreecommitdiffstats
path: root/dpd/main.py
blob: 24daa5a52530abc302e351d059ba1642d8ea06bd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# DPD Computation Engine main file.
#
# http://www.opendigitalradio.org
# Licence: The MIT License, see notice at the end of this file
# noinspection PyBroadException

"""This Python script is the main file for ODR-DabMod's DPD Computation Engine.
This engine calculates and updates the parameter of the digital
predistortion module of ODR-DabMod."""

import datetime
import os
import argparse
import matplotlib

matplotlib.use('Agg')

parser = argparse.ArgumentParser(
    description="DPD Computation Engine for ODR-DabMod")
parser.add_argument('--port', default=50055, type=int,
                    help='port of DPD server to connect to (default: 50055)',
                    required=False)
parser.add_argument('--rc-port', default=9400, type=int,
                    help='port of ODR-DabMod ZMQ Remote Control to connect to (default: 9400)',
                    required=False)
parser.add_argument('--samplerate', default=8192000, type=int,
                    help='Sample rate',
                    required=False)
parser.add_argument('--coefs', default='poly.coef',
                    help='File with DPD coefficients, which will be read by ODR-DabMod',
                    required=False)
parser.add_argument('--txgain', default=-1,
                    help='TX Gain, -1 to leave unchanged',
                    required=False,
                    type=int)
parser.add_argument('--rxgain', default=30,
                    help='TX Gain, -1 to leave unchanged',
                    required=False,
                    type=int)
parser.add_argument('--digital_gain', default=0.6,
                    help='Digital Gain',
                    required=False,
                    type=float)
parser.add_argument('--target_median', default=0.05,
                    help='The target median for the RX and TX AGC',
                    required=False,
                    type=float)
parser.add_argument('--samps', default='81920', type=int,
                    help='Number of samples to request from ODR-DabMod',
                    required=False)
parser.add_argument('-i', '--iterations', default=10, type=int,
                    help='Number of iterations to run',
                    required=False)
parser.add_argument('-L', '--lut',
                    help='Use lookup table instead of polynomial predistorter',
                    action="store_true")
parser.add_argument('--plot',
                    help='Enable all plots, to be more selective choose plots in GlobalConfig.py',
                    action="store_true")
parser.add_argument('--name', default="", type=str,
                    help='Name of the logging directory')

cli_args = parser.parse_args()

port = cli_args.port
port_rc = cli_args.rc_port
coef_path = cli_args.coefs
digital_gain = cli_args.digital_gain
num_req = cli_args.samps
samplerate = cli_args.samplerate
num_iter = cli_args.iterations
target_median = cli_args.target_median
rxgain = cli_args.rxgain
txgain = cli_args.txgain
name = cli_args.name
plot = cli_args.plot

# Logging
import logging

dt = datetime.datetime.now().isoformat()
logging_path = '/tmp/dpd_{}'.format(dt).replace('.', '_').replace(':', '-')
if name:
    logging_path += '_' + name
os.makedirs(logging_path)
logging.basicConfig(format='%(asctime)s - %(module)s - %(levelname)s - %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    filename='{}/dpd.log'.format(logging_path),
                    filemode='w',
                    level=logging.DEBUG)
# also log up to INFO to console
console = logging.StreamHandler()
console.setLevel(logging.INFO)
# set a format which is simpler for console use
formatter = logging.Formatter('%(asctime)s - %(module)s - %(levelname)s - %(message)s')
# tell the handler to use this format
console.setFormatter(formatter)
# add the handler to the root logger
logging.getLogger('').addHandler(console)

logging.info(cli_args)

import numpy as np
import traceback
from src.Model import Lut, Poly
import src.Heuristics as Heuristics
from src.Measure import Measure
from src.ExtractStatistic import ExtractStatistic
from src.Adapt import Adapt
from src.RX_Agc import Agc
from src.TX_Agc import TX_Agc
from src.Symbol_align import Symbol_align
from src.GlobalConfig import GlobalConfig
from src.MER import MER
from src.Measure_Shoulders import Measure_Shoulders

c = GlobalConfig(cli_args, logging_path)
SA = Symbol_align(c)
MER = MER(c)
MS = Measure_Shoulders(c)
meas = Measure(c, samplerate, port, num_req)
extStat = ExtractStatistic(c)
adapt = Adapt(c, port_rc, coef_path)

if cli_args.lut:
    model = Lut(c)
else:
    model = Poly(c)
adapt.set_predistorter(model.get_dpd_data())
adapt.set_digital_gain(digital_gain)

# Set RX Gain
if rxgain == -1:
    rxgain = adapt.get_rxgain()
else:
    adapt.set_rxgain(rxgain)

# Set TX Gain
if txgain == -1:
    txgain = adapt.get_txgain()
else:
    adapt.set_txgain(txgain)

tx_gain = adapt.get_txgain()
rx_gain = adapt.get_rxgain()
digital_gain = adapt.get_digital_gain()

dpddata = adapt.get_predistorter()
if dpddata[0] == "poly":
    coefs_am = dpddata[1]
    coefs_pm = dpddata[2]
    logging.info(
        "TX gain {}, RX gain {}, dpd_coefs_am {},"
        " dpd_coefs_pm {}, digital_gain {}".format(
            tx_gain, rx_gain, coefs_am, coefs_pm, digital_gain
        )
    )
elif dpddata[0] == "lut":
    scalefactor = dpddata[1]
    lut = dpddata[2]
    logging.info(
        "TX gain {}, RX gain {}, LUT scalefactor {},"
        " LUT {}, digital_gain {}".format(
            tx_gain, rx_gain, scalefactor, lut, digital_gain
        )
    )
else:
    logging.error("Unknown dpd data format {}".format(dpddata[0]))

tx_agc = TX_Agc(adapt, c)

# Automatic Gain Control
agc = Agc(meas, adapt, c)
agc.run()

state = 'report'
i = 0
lr = None
n_meas = None
while i < num_iter:
    try:
        # Measure
        if state == 'measure':
            # Get Samples and check gain
            txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median = meas.get_samples()
            if tx_agc.adapt_if_necessary(txframe_aligned):
                continue

            # Extract usable data from measurement
            tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned)

            n_meas = Heuristics.get_n_meas(i)
            if extStat.n_meas >= n_meas:  # Use as many measurements nr of runs
                state = 'model'
            else:
                state = 'measure'

        # Model
        elif state == 'model':
            # Calculate new model parameters and delete old measurements
            if any([x is None for x in [tx, rx, phase_diff]]):
                logging.error("No data to calculate model")
                state = 'measure'
                continue

            lr = Heuristics.get_learning_rate(i)
            model.train(tx, rx, phase_diff, lr=lr)
            dpddata = model.get_dpd_data()
            extStat = ExtractStatistic(c)
            state = 'adapt'

        # Adapt
        elif state == 'adapt':
            adapt.set_predistorter(dpddata)
            state = 'report'

        # Report
        elif state == 'report':
            try:
                txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median = meas.get_samples()

                # Store all settings for pre-distortion, tx and rx
                adapt.dump()

                # Collect logging data
                off = SA.calc_offset(txframe_aligned)
                tx_mer = MER.calc_mer(txframe_aligned[off:off + c.T_U], debug_name='TX')
                rx_mer = MER.calc_mer(rxframe_aligned[off:off + c.T_U], debug_name='RX')
                mse = np.mean(np.abs((txframe_aligned - rxframe_aligned) ** 2))
                tx_gain = adapt.get_txgain()
                rx_gain = adapt.get_rxgain()
                digital_gain = adapt.get_digital_gain()
                tx_median = np.median(np.abs(txframe_aligned))
                rx_shoulder_tuple = MS.average_shoulders(rxframe_aligned)
                tx_shoulder_tuple = MS.average_shoulders(txframe_aligned)

                # Generic logging
                logging.info(list((name, eval(name)) for name in
                                  ['i', 'tx_mer', 'tx_shoulder_tuple', 'rx_mer',
                                   'rx_shoulder_tuple', 'mse', 'tx_gain',
                                   'digital_gain', 'rx_gain', 'rx_median',
                                   'tx_median', 'lr', 'n_meas']))

                # Model specific logging
                if dpddata[0] == 'poly':
                    coefs_am = dpddata[1]
                    coefs_pm = dpddata[2]
                    logging.info('It {}: coefs_am {}'.
                                 format(i, coefs_am))
                    logging.info('It {}: coefs_pm {}'.
                                 format(i, coefs_pm))
                elif dpddata[0] == 'lut':
                    scalefactor = dpddata[1]
                    lut = dpddata[2]
                    logging.info('It {}: LUT scalefactor {}, LUT {}'.
                                 format(i, scalefactor, lut))
            except:
                logging.error('Iteration {}: Report failed.'.format(i))
                logging.error(traceback.format_exc())
            i += 1
            state = 'measure'

    except:
        logging.error('Iteration {} failed.'.format(i))
        logging.error(traceback.format_exc())

# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
# Copyright (c) 2017 Matthias P. Braendli
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.