/*
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010 Her Majesty the
Queen in Right of Canada (Communications Research Center Canada)
Copyright (C) 2018
Evariste F5OEO, evaristec@gmail.com
Copyright (C) 2019
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
DESCRIPTION:
It is an output driver using the LimeSDR library.
*/
/*
This file is part of ODR-DabMod.
ODR-DabMod is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DabMod is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DabMod. If not, see .
*/
#include "output/Lime.h"
#ifdef HAVE_LIMESDR
//#define LIMEDEBUG
#include
#include
#include
#include
#include "Log.h"
#include "Utils.h"
#ifdef __ARM_NEON__
#include
#endif
using namespace std;
namespace Output
{
static constexpr size_t FRAMES_MAX_SIZE = 2;
static constexpr size_t FRAME_LENGTH = 196608; // at native sample rate!
#ifdef __ARM_NEON__
void conv_s16_from_float(unsigned n, const float *a, short *b)
{
unsigned i;
const float32x4_t plusone4 = vdupq_n_f32(1.0f);
const float32x4_t minusone4 = vdupq_n_f32(-1.0f);
const float32x4_t half4 = vdupq_n_f32(0.5f);
const float32x4_t scale4 = vdupq_n_f32(32767.0f);
const uint32x4_t mask4 = vdupq_n_u32(0x80000000);
for (i = 0; i < n / 4; i++)
{
float32x4_t v4 = ((float32x4_t *)a)[i];
v4 = vmulq_f32(vmaxq_f32(vminq_f32(v4, plusone4), minusone4), scale4);
const float32x4_t w4 = vreinterpretq_f32_u32(vorrq_u32(vandq_u32(
vreinterpretq_u32_f32(v4), mask4),
vreinterpretq_u32_f32(half4)));
((int16x4_t *)b)[i] = vmovn_s32(vcvtq_s32_f32(vaddq_f32(v4, w4)));
}
}
#else
void conv_s16_from_float(unsigned n, const float *a, short *b)
{
unsigned i;
for (i = 0; i < n; i++)
{
b[i] = (short)(a[i] * 32767.0f);
}
}
#endif
Lime::Lime(SDRDeviceConfig &config) : SDRDevice(), m_conf(config)
{
m_interpolate = m_conf.upsample;
etiLog.level(info) << "Lime:Creating the device with: " << m_conf.device;
const int device_count = LMS_GetDeviceList(nullptr);
if (device_count < 0)
{
etiLog.level(error) << "Error making LimeSDR device: " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot find LimeSDR output device");
}
lms_info_str_t device_list[device_count];
if (LMS_GetDeviceList(device_list) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot find LimeSDR output device");
}
size_t device_i = 0; // If several cards, need to get device by configuration
if (LMS_Open(&m_device, device_list[device_i], nullptr) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot open LimeSDR output device");
}
if (LMS_Reset(m_device) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot reset LimeSDR output device");
}
if (LMS_Init(m_device) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot init LimeSDR output device");
}
if (m_conf.masterClockRate != 0)
{
if (LMS_SetClockFreq(m_device, LMS_CLOCK_CGEN, m_conf.masterClockRate) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot set master clock rate (CGEN) for LimeSDR output device");
}
float_type masterClockRate = 0;
if (LMS_GetClockFreq(m_device, LMS_CLOCK_CGEN, &masterClockRate) < 0)
{
etiLog.level(error) << "Error reading CGEN clock LimeSDR device: %s " << LMS_GetLastErrorMessage();
}
else
{
etiLog.level(info) << "LimeSDR master clock rate set to " << fixed << setprecision(4) << masterClockRate;
}
}
if (LMS_EnableChannel(m_device, LMS_CH_TX, m_channel, true) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot enable channel for LimeSDR output device");
}
if (LMS_SetSampleRate(m_device, m_conf.sampleRate * m_interpolate, 0) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot set sample rate for LimeSDR output device");
}
float_type host_sample_rate = 0.0;
if (LMS_GetSampleRate(m_device, LMS_CH_TX, m_channel, &host_sample_rate, NULL) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot get samplerate for LimeSDR output device");
}
etiLog.level(info) << "LimeSDR sample rate set to " << fixed << setprecision(4) << host_sample_rate / 1000.0 << " kHz";
tune(m_conf.lo_offset, m_conf.frequency);
float_type cur_frequency = 0.0;
if (LMS_GetLOFrequency(m_device, LMS_CH_TX, m_channel, &cur_frequency) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot get frequency for LimeSDR output device");
}
etiLog.level(info) << "LimeSDR:Actual frequency: " << fixed << setprecision(3) << cur_frequency / 1000.0 << " kHz.";
if (LMS_SetNormalizedGain(m_device, LMS_CH_TX, m_channel, m_conf.txgain / 100.0) < 0)
{
//value 0..100 -> Normalize
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot set TX gain for LimeSDR output device");
}
if (LMS_SetAntenna(m_device, LMS_CH_TX, m_channel, LMS_PATH_TX2) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot set antenna for LimeSDR output device");
}
double bandwidth_calibrating = 2.5e6; // Minimal bandwidth
if (LMS_Calibrate(m_device, LMS_CH_TX, m_channel, bandwidth_calibrating, 0) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot calibrate LimeSDR output device");
}
switch (m_interpolate)
{
case 1:
{
//design matlab
static double coeff[61] = {
-0.0008126748726, -0.0003874975955, 0.0007290032809, -0.0009636150789, 0.0007643355639,
3.123887291e-05, -0.001263667713, 0.002418729011, -0.002785810735, 0.001787990681,
0.0006407162873, -0.003821208142, 0.006409643684, -0.006850919221, 0.004091503099,
0.00172403187, -0.008917749859, 0.01456955727, -0.01547530293, 0.009518089704,
0.00304264226, -0.01893160492, 0.0322769247, -0.03613986075, 0.02477015182,
0.0041426518, -0.04805115238, 0.09958232939, -0.1481673121, 0.1828524768,
0.8045722842, 0.1828524768, -0.1481673121, 0.09958232939, -0.04805115238,
0.0041426518, 0.02477015182, -0.03613986075, 0.0322769247, -0.01893160492,
0.00304264226, 0.009518089704, -0.01547530293, 0.01456955727, -0.008917749859,
0.00172403187, 0.004091503099, -0.006850919221, 0.006409643684, -0.003821208142,
0.0006407162873, 0.001787990681, -0.002785810735, 0.002418729011, -0.001263667713,
3.123887291e-05, 0.0007643355639, -0.0009636150789, 0.0007290032809, -0.0003874975955,
-0.0008126748726};
LMS_SetGFIRCoeff(m_device, LMS_CH_TX, m_channel, LMS_GFIR3, coeff, 61);
}
break;
default:
throw runtime_error("Unsupported interpolate: " + to_string(m_interpolate));
}
if (m_conf.sampleRate != 2048000)
{
throw runtime_error("Lime output only supports native samplerate = 2048000");
/* The buffer_size calculation below does not take into account resampling */
}
// Frame duration is 96ms
size_t buffer_size = FRAME_LENGTH * m_interpolate * 10; // We take 10 Frame buffer size Fifo
// Fifo seems to be round to multiple of SampleRate
m_tx_stream.channel = m_channel;
m_tx_stream.fifoSize = buffer_size;
m_tx_stream.throughputVsLatency = 2.0; // Should be {0..1} but could be extended
m_tx_stream.isTx = LMS_CH_TX;
m_tx_stream.dataFmt = lms_stream_t::LMS_FMT_I16;
if (LMS_SetupStream(m_device, &m_tx_stream) < 0)
{
etiLog.level(error) << "Error making LimeSDR device: %s " << LMS_GetLastErrorMessage();
throw runtime_error("Cannot setup TX stream for LimeSDR output device");
}
LMS_StartStream(&m_tx_stream);
LMS_SetGFIR(m_device, LMS_CH_TX, m_channel, LMS_GFIR3, true);
}
Lime::~Lime()
{
if (m_device != nullptr)
{
LMS_StopStream(&m_tx_stream);
LMS_DestroyStream(m_device, &m_tx_stream);
LMS_EnableChannel(m_device, LMS_CH_TX, m_channel, false);
LMS_Close(m_device);
}
}
void Lime::tune(double lo_offset, double frequency)
{
if (not m_device)
throw runtime_error("Lime device not set up");
if (LMS_SetLOFrequency(m_device, LMS_CH_TX, m_channel, m_conf.frequency) < 0)
{
etiLog.level(error) << "Error setting LimeSDR TX frequency: %s " << LMS_GetLastErrorMessage();
}
}
double Lime::get_tx_freq(void) const
{
if (not m_device)
throw runtime_error("Lime device not set up");
float_type cur_frequency = 0.0;
if (LMS_GetLOFrequency(m_device, LMS_CH_TX, m_channel, &cur_frequency) < 0)
{
etiLog.level(error) << "Error getting LimeSDR TX frequency: %s " << LMS_GetLastErrorMessage();
}
return cur_frequency;
}
void Lime::set_txgain(double txgain)
{
m_conf.txgain = txgain;
if (not m_device)
throw runtime_error("Lime device not set up");
if (LMS_SetNormalizedGain(m_device, LMS_CH_TX, m_channel, m_conf.txgain / 100.0) < 0)
{
etiLog.level(error) << "Error setting LimeSDR TX gain: %s " << LMS_GetLastErrorMessage();
}
}
double Lime::get_txgain(void) const
{
if (not m_device)
throw runtime_error("Lime device not set up");
float_type txgain = 0;
if (LMS_GetNormalizedGain(m_device, LMS_CH_TX, m_channel, &txgain) < 0)
{
etiLog.level(error) << "Error getting LimeSDR TX gain: %s " << LMS_GetLastErrorMessage();
}
return txgain;
}
void Lime::set_bandwidth(double bandwidth)
{
LMS_SetLPFBW(m_device, LMS_CH_TX, m_channel, bandwidth);
}
double Lime::get_bandwidth(void) const
{
double bw;
LMS_GetLPFBW(m_device, LMS_CH_TX, m_channel, &bw);
return bw;
}
SDRDevice::run_statistics_t Lime::get_run_statistics(void) const
{
run_statistics_t rs;
rs["underruns"] = underflows;
rs["overruns"] = overflows;
rs["dropped_packets"] = dropped_packets;
rs["frames"] = num_frames_modulated;
rs["fifo_fill"] = m_last_fifo_fill_percent * 100;
return rs;
}
double Lime::get_real_secs(void) const
{
// TODO
return 0.0;
}
void Lime::set_rxgain(double rxgain)
{
// TODO
}
double Lime::get_rxgain(void) const
{
// TODO
return 0.0;
}
size_t Lime::receive_frame(
complexf *buf,
size_t num_samples,
frame_timestamp &ts,
double timeout_secs)
{
// TODO
return 0;
}
bool Lime::is_clk_source_ok() const
{
// TODO
return true;
}
const char *Lime::device_name(void) const
{
return "Lime";
}
std::optional Lime::get_temperature(void) const
{
if (not m_device)
throw runtime_error("Lime device not set up");
float_type temp = 0;
if (LMS_GetChipTemperature(m_device, 0, &temp) >= 0) {
return temp;
}
else {
etiLog.level(error) << "Error getting LimeSDR temperature: %s " << LMS_GetLastErrorMessage();
return std::nullopt;
}
}
void Lime::transmit_frame(struct FrameData&& frame)
{
if (not m_device)
throw runtime_error("Lime device not set up");
// The frame buffer contains bytes representing FC32 samples
const complexf *buf = reinterpret_cast(frame.buf.data());
const size_t numSamples = frame.buf.size() / sizeof(complexf);
m_i16samples.resize(numSamples * 2);
short *buffi16 = &m_i16samples[0];
conv_s16_from_float(numSamples * 2, (const float *)buf, buffi16);
if ((frame.buf.size() % sizeof(complexf)) != 0)
{
throw runtime_error("Lime: invalid buffer size");
}
lms_stream_status_t LimeStatus;
LMS_GetStreamStatus(&m_tx_stream, &LimeStatus);
overflows += LimeStatus.overrun;
underflows += LimeStatus.underrun;
dropped_packets += LimeStatus.droppedPackets;
#ifdef LIMEDEBUG
etiLog.level(info) << LimeStatus.fifoFilledCount << "/" << LimeStatus.fifoSize << ":" << numSamples << "Rate" << LimeStatus.linkRate / (2 * 2.0);
etiLog.level(info) << "overrun" << LimeStatus.overrun << "underun" << LimeStatus.underrun << "drop" << LimeStatus.droppedPackets;
#endif
m_last_fifo_fill_percent.store((float)LimeStatus.fifoFilledCount / (float)LimeStatus.fifoSize);
/*
if(LimeStatus.fifoFilledCount>=5*FRAME_LENGTH*m_interpolate) // Start if FIFO is half full {
if(not m_tx_stream_active) {
etiLog.level(info) << "Fifo OK : Normal running";
LMS_StartStream(&m_tx_stream);
m_tx_stream_active = true;
}
}
*/
ssize_t num_sent = 0;
lms_stream_meta_t meta;
meta.flushPartialPacket = true;
meta.timestamp = 0;
meta.waitForTimestamp = false;
if (m_interpolate == 1)
{
num_sent = LMS_SendStream(&m_tx_stream, buffi16, numSamples, &meta, 1000);
}
if (num_sent == 0)
{
etiLog.level(info) << "Lime: zero samples sent" << num_sent;
}
else if (num_sent == -1)
{
etiLog.level(error) << "Error sending LimeSDR stream: %s " << LMS_GetLastErrorMessage();
}
num_frames_modulated++;
}
} // namespace Output
#endif // HAVE_LIMESDR