/* Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011 Her Majesty the Queen in Right of Canada (Communications Research Center Canada) Copyright (C) 2017 Matthias P. Braendli, matthias.braendli@mpb.li http://opendigitalradio.org */ /* This file is part of ODR-DabMod. ODR-DabMod is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ODR-DabMod is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ODR-DabMod. If not, see . */ #include "PAPRStats.h" #include #include #if defined(TEST) /* compile with g++ -std=c++11 -Wall -DTEST PAPRStats.cpp -o paprtest */ # include #endif PAPRStats::PAPRStats(size_t num_blocks_to_accumulate) : m_num_blocks_to_accumulate(num_blocks_to_accumulate) { } void PAPRStats::process_block(const complexf* data, size_t data_len) { double norm_peak = 0; double rms2 = 0; for (size_t i = 0; i < data_len; i++) { const double x_norm = std::norm(data[i]); if (x_norm > norm_peak) { norm_peak = x_norm; } rms2 += x_norm; } rms2 /= data_len; #if defined(TEST) std::cerr << "Accumulating peak " << norm_peak << " rms2 " << rms2 << std::endl; #endif m_squared_peaks.push_back(norm_peak); m_squared_mean.push_back(rms2); if (m_squared_mean.size() > m_num_blocks_to_accumulate) { m_squared_mean.pop_front(); m_squared_peaks.pop_front(); } } double PAPRStats::calculate_papr() const { if (m_squared_mean.size() < m_num_blocks_to_accumulate) { return 0; } if (m_squared_mean.size() != m_squared_peaks.size()) { throw std::logic_error("Invalid PAPR measurement sizes"); } double peak = 0; double rms2 = 0; for (size_t i = 0; i < m_squared_peaks.size(); i++) { if (m_squared_peaks[i] > peak) { peak = m_squared_peaks[i]; } rms2 += m_squared_mean[i]; } // This assumes all blocks given to process have the same length rms2 /= m_squared_peaks.size(); #if defined(TEST) std::cerr << "Calculate peak " << peak << " rms2 " << rms2 << std::endl; #endif return 10.0 * std::log10(peak / rms2); } #if defined(TEST) /* Test python code: import numpy as np vec = 0.5 * np.exp(np.complex(0, 0.3) * np.arange(40)) vec[26] = 10.0 * vec[26] rms = np.mean(vec * np.conj(vec)).real peak = np.amax(vec * np.conj(vec)).real print("rms {}".format(rms)) print("peak {}".format(peak)) print(10. * np.log10(peak / rms)) */ int main(int argc, char **argv) { using namespace std; vector vec(40); for (size_t i = 0; i < vec.size(); i++) { vec[i] = polar(0.5, 0.3 * i); if (i == 26) { vec[i] *= 10; } cout << " " << vec[i]; } cout << endl; PAPRStats stats(4); for (size_t i = 0; i < 3; i++) { stats.process_block(vec.data(), vec.size()); } const auto papr0 = stats.calculate_papr(); if (papr0 != 0) { cerr << "Expected 0, got " << papr0 << endl; } stats.process_block(vec.data(), vec.size()); const auto papr1 = stats.calculate_papr(); cout << "PAPR = " << papr1 << " dB" << endl; } #endif