/* Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010 Her Majesty the Queen in Right of Canada (Communications Research Center Canada) Includes modifications for which no copyright is claimed 2012, Matthias P. Braendli, matthias.braendli@mpb.li */ /* This file is part of CRC-DADMOD. CRC-DADMOD is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. CRC-DADMOD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with CRC-DADMOD. If not, see . */ #define ENABLE_UHD 1 #include "OutputUHD.h" #include "PcDebug.h" #include "Log.h" #include "RemoteControl.h" #include #include #include #include #include #include #include typedef std::complex complexf; OutputUHD::OutputUHD(const char* device, unsigned sampleRate, double frequency, int txgain, bool enableSync, bool muteNoTimestamps, Logger& logger) : ModOutput(ModFormat(1), ModFormat(0)), RemoteControllable("uhd"), myLogger(logger), mySampleRate(sampleRate), myTxGain(txgain), myFrequency(frequency), mute_no_timestamps(muteNoTimestamps), enable_sync(enableSync) { MDEBUG("OutputUHD::OutputUHD(device: %s) @ %p\n", device, this); /* register the parameters that can be remote controlled */ RC_ADD_PARAMETER(txgain, "UHD analog daughterboard TX gain"); RC_ADD_PARAMETER(freq, "UHD transmission frequency"); RC_ADD_PARAMETER(muting, "mute the output by stopping the transmitter"); myDevice = device; #if ENABLE_UHD uhd::set_thread_priority_safe(); //create a usrp device MDEBUG("OutputUHD:Creating the usrp device with: %s...\n", myDevice.c_str()); //try { myUsrp = uhd::usrp::multi_usrp::make(myDevice); /*} catch (std::exception &e) { fprintf(stderr, "FLABBER FLABBER FLABBER\n"); }*/ MDEBUG("OutputUHD:Using device: %s...\n", myUsrp->get_pp_string().c_str()); if (enable_sync) { MDEBUG("OutputUHD:Setting REFCLK and PPS input...\n"); uhd::clock_config_t clock_config; clock_config.ref_source = uhd::clock_config_t::REF_SMA; clock_config.pps_source = uhd::clock_config_t::PPS_SMA; clock_config.pps_polarity = uhd::clock_config_t::PPS_POS; myUsrp->set_clock_config(clock_config, uhd::usrp::multi_usrp::ALL_MBOARDS); } std::cerr << "UHD clock source is " << myUsrp->get_clock_source(0) << std::endl; std::cerr << "UHD time source is " << myUsrp->get_time_source(0) << std::endl; //set the tx sample rate MDEBUG("OutputUHD:Setting rate to %d...\n", mySampleRate); myUsrp->set_tx_rate(mySampleRate); MDEBUG("OutputUHD:Actual TX Rate: %f Msps...\n", myUsrp->get_tx_rate()); //set the centre frequency MDEBUG("OutputUHD:Setting freq to %f...\n", myFrequency); myUsrp->set_tx_freq(myFrequency); myFrequency = myUsrp->get_tx_freq(); MDEBUG("OutputUHD:Actual frequency: %f\n", myFrequency); myUsrp->set_tx_gain(myTxGain); MDEBUG("OutputUHD:Actual TX Gain: %f ...\n", myUsrp->get_tx_gain()); if (enable_sync) { /* handling time for synchronisation: wait until the next full * second, and set the USRP time at next PPS */ struct timespec now; time_t seconds; if (clock_gettime(CLOCK_REALTIME, &now)) { fprintf(stderr, "errno: %d\n", errno); perror("OutputUHD:Error: could not get time: "); myLogger(error, "OutputUHD: could not get time"); } else { seconds = now.tv_sec; MDEBUG("OutputUHD:sec+1: %ld ; now: %ld ...\n", seconds+1, now.tv_sec); while (seconds + 1 > now.tv_sec) { usleep(1); if (clock_gettime(CLOCK_REALTIME, &now)) { fprintf(stderr, "errno: %d\n", errno); perror("OutputUHD:Error: could not get time: "); myLogger(error, "OutputUHD: could not get time"); break; } } MDEBUG("OutputUHD:sec+1: %ld ; now: %ld ...\n", seconds+1, now.tv_sec); /* We are now shortly after the second change. */ usleep(200000); // 200ms, we want the PPS to be later myUsrp->set_time_unknown_pps(uhd::time_spec_t(seconds + 2)); fprintf(stderr, "OutputUHD: Setting USRP time next pps to %f\n", uhd::time_spec_t(seconds + 2).get_real_secs()); } usleep(1e6); fprintf(stderr, "OutputUHD: USRP time %f\n", myUsrp->get_time_now().get_real_secs()); } // preparing output thread worker data uwd.myUsrp = myUsrp; #else fprintf(stderr, "OutputUHD: UHD initialisation disabled at compile-time\n"); myLogger(error, "OutputUHD: UHD initialisation disabled at compile-time"); #endif uwd.frame0.ts.timestamp_valid = false; uwd.frame1.ts.timestamp_valid = false; uwd.sampleRate = mySampleRate; uwd.sourceContainsTimestamp = false; uwd.muteNoTimestamps = mute_no_timestamps; // Since we don't know the buffer size, we cannot initialise // the buffers here first_run = true; shared_ptr b(new barrier(2)); my_sync_barrier = b; uwd.sync_barrier = b; worker.start(&uwd); MDEBUG("OutputUHD:UHD ready.\n"); } OutputUHD::~OutputUHD() { MDEBUG("OutputUHD::~OutputUHD() @ %p\n", this); worker.stop(); } int OutputUHD::process(Buffer* dataIn, Buffer* dataOut) { struct frame_timestamp ts; uwd.muting = myMuting; // On the first call, we must do some allocation and we must fill // the first buffer // We will only wait on the barrier on the subsequent calls to // OutputUHD::process if (first_run) { fprintf(stderr, "OutUHD.process:Initialising...\n"); myLogger(debug, "OutputUHD: UHD initialising..."); uwd.bufsize = dataIn->getLength(); uwd.frame0.buf = malloc(uwd.bufsize); uwd.frame1.buf = malloc(uwd.bufsize); uwd.sourceContainsTimestamp = enable_sync && myEtiReader->sourceContainsTimestamp(); // The worker begins by transmitting buf0 memcpy(uwd.frame0.buf, dataIn->getData(), uwd.bufsize); myEtiReader->calculateTimestamp(ts); uwd.frame0.ts = ts; uwd.frame0.fct = myEtiReader->getFCT(); activebuffer = 1; lastLen = uwd.bufsize; first_run = false; fprintf(stderr, "OutUHD.process:Initialising complete.\n"); myLogger(debug, "OutputUHD: UHD initialising complete"); } else { if (lastLen != dataIn->getLength()) { // I expect that this never happens. fprintf(stderr, "OutUHD.process:AAAAH PANIC input length changed from %zu to %zu !\n", lastLen, dataIn->getLength()); myLogger(emerg, "OutputUHD: Fatal error, input length changed !"); throw std::runtime_error("Non-constant input length!"); } //fprintf(stderr, "OutUHD.process:Waiting for barrier\n"); my_sync_barrier.get()->wait(); // write into the our buffer while // the worker sends the other. myEtiReader->calculateTimestamp(ts); uwd.sourceContainsTimestamp = enable_sync && myEtiReader->sourceContainsTimestamp(); if (activebuffer == 0) { memcpy(uwd.frame0.buf, dataIn->getData(), uwd.bufsize); uwd.frame0.ts = ts; uwd.frame0.fct = myEtiReader->getFCT(); } else if (activebuffer == 1) { memcpy(uwd.frame1.buf, dataIn->getData(), uwd.bufsize); uwd.frame1.ts = ts; uwd.frame1.fct = myEtiReader->getFCT(); } activebuffer = (activebuffer + 1) % 2; } return uwd.bufsize; } void UHDWorker::process(struct UHDWorkerData *uwd) { int workerbuffer = 0; time_t tx_second = 0; double pps_offset = 0; double last_pps = 2.0; double usrp_time; //const struct timespec hundred_nano = {0, 100}; size_t sizeIn; struct UHDWorkerFrameData* frame; size_t num_acc_samps; //number of accumulated samples int write_fail_count; #if ENABLE_UHD // Transmit timeout const double timeout = 0.2; uhd::stream_args_t stream_args("fc32"); //complex floats uhd::tx_streamer::sptr myTxStream = uwd->myUsrp->get_tx_stream(stream_args); size_t bufsize = myTxStream->get_max_num_samps(); #endif const complexf* in; uhd::tx_metadata_t md; md.start_of_burst = false; md.end_of_burst = false; while (running) { md.has_time_spec = false; md.time_spec = uhd::time_spec_t(0.0); num_acc_samps = 0; write_fail_count = 0; /* Wait for barrier */ // this wait will hopefully always be the second one // because modulation should be quicker than transmission //fprintf(stderr, "Worker:Waiting for barrier\n"); uwd->sync_barrier.get()->wait(); if (workerbuffer == 0) { frame = &(uwd->frame0); } else if (workerbuffer == 1) { frame = &(uwd->frame1); } else { fprintf(stderr, "UHDWorker.process: workerbuffer: %d\n", workerbuffer); perror("UHDWorker.process: workerbuffer is neither 0 nor 1!\n"); } in = reinterpret_cast(frame->buf); pps_offset = frame->ts.timestamp_pps_offset; // // Tx second from MNSC tx_second = frame->ts.timestamp_sec; sizeIn = uwd->bufsize / sizeof(complexf); #if ENABLE_UHD // Check for ref_lock if (! uwd->myUsrp->get_mboard_sensor("ref_locked", 0).to_bool()) { fprintf(stderr, "UHDWorker: RefLock lost !\n"); uwd->logger->log(alert, "OutputUHD: External reference clock lock lost !"); } usrp_time = uwd->myUsrp->get_time_now().get_real_secs(); #else usrp_time = 0; #endif if (uwd->sourceContainsTimestamp) { if (!frame->ts.timestamp_valid) { /* We have not received a full timestamp through * MNSC. We sleep through the frame. */ fprintf(stderr, "UHDOut: Throwing sample %d away: incomplete timestamp %zu + %f\n", frame->fct, tx_second, pps_offset); uwd->logger->log(info, "OutputUHD: Throwing sample %d away: incomplete timestamp %zu + %f\n", frame->fct, tx_second, pps_offset); usleep(20000); goto loopend; } md.has_time_spec = true; md.time_spec = uhd::time_spec_t(tx_second, pps_offset); // md is defined, let's do some checks if (md.time_spec.get_real_secs() + 0.2 < usrp_time) { fprintf(stderr, "* Timestamp in the past! offset: %f" " (%f) frame %d tx_second %zu; pps %f\n", md.time_spec.get_real_secs() - usrp_time, usrp_time, frame->fct, tx_second, pps_offset); goto loopend; //skip the frame } #if ENABLE_UHD if (md.time_spec.get_real_secs() > usrp_time + TIMESTAMP_MARGIN_FUTURE) { fprintf(stderr, "* Timestamp too far in the future! offset: %f\n", md.time_spec.get_real_secs() - usrp_time); usleep(20000); //sleep so as to fill buffers } if (md.time_spec.get_real_secs() > usrp_time + TIMESTAMP_ABORT_FUTURE) { fprintf(stderr, "* Timestamp way too far in the future! offset: %f\n", md.time_spec.get_real_secs() - usrp_time); fprintf(stderr, "* Aborting\n"); uwd->logger->log(error, "OutputUHD: timestamp is way to far in the future, aborting"); throw std::runtime_error("Timestamp error. Aborted."); } #endif if (last_pps > pps_offset) { fprintf(stderr, "UHDOut (usrp time: %f): frame %d; tx_second %zu; pps %.9f\n", usrp_time, frame->fct, tx_second, pps_offset); } } else { // !uwd->sourceContainsTimestamp if (uwd->muting || uwd->muteNoTimestamps) { /* There was some error decoding the timestamp */ fprintf(stderr, "UHDOut: Muting sample %d : no timestamp\n", frame->fct); usleep(20000); goto loopend; } } #if ENABLE_UHD PDEBUG("UHDWorker::process:max_num_samps: %zu.\n", myTxStream->get_max_num_samps()); /* size_t num_tx_samps = myTxStream->send( dataIn, sizeIn, md, timeout); MDEBUG("UHDWorker::process:num_tx_samps: %zu.\n", num_tx_samps); */ while (running && !uwd->muting && (num_acc_samps < sizeIn)) { size_t samps_to_send = std::min(sizeIn - num_acc_samps, bufsize); //ensure the the last packet has EOB set if the timestamps has been refreshed //and needs to be reconsidered. md.end_of_burst = (frame->ts.timestamp_refresh && (samps_to_send <= bufsize)); //send a single packet size_t num_tx_samps = myTxStream->send( &in[num_acc_samps], samps_to_send, md, timeout); num_acc_samps += num_tx_samps; md.time_spec = uhd::time_spec_t(tx_second, pps_offset) + uhd::time_spec_t(0, num_acc_samps/uwd->sampleRate); /* fprintf(stderr, "*** pps_offset %f, md.time_spec %f, usrp->now %f\n", pps_offset, md.time_spec.get_real_secs(), uwd->myUsrp->get_time_now().get_real_secs()); // */ if (num_tx_samps == 0) { #if 1 fprintf(stderr, "UHDWorker::process() unable to write to device, skipping frame!\n"); break; #else // This has been disabled, because if there is a write failure, // we'd better not insist and try to go on transmitting future // frames. // The goal is not to try to send by all means possible. It's // more important to make sure the SFN is not disturbed. fprintf(stderr, "F"); nanosleep(&hundred_nano, NULL); write_fail_count++; if (write_fail_count >= 3) { double ts = md.time_spec.get_real_secs(); double t_usrp = uwd->myUsrp->get_time_now().get_real_secs(); fprintf(stderr, "*** USRP write fail count %d\n", write_fail_count); fprintf(stderr, "*** delta %f, md.time_spec %f, usrp->now %f\n", ts - t_usrp, ts, t_usrp); fprintf(stderr, "UHDWorker::process() unable to write to device, skipping frame!\n"); break; } #endif } //std::cerr << std::endl << "Waiting for async burst ACK... " << std::flush; uhd::async_metadata_t async_md; if (uwd->myUsrp->get_device()->recv_async_msg(async_md, 0)) { std::string uhd_async_message = "Received UHD message "; bool failure = true; switch (async_md.event_code) { case uhd::async_metadata_t::EVENT_CODE_BURST_ACK: failure = false; break; case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW: uhd_async_message += "Underflow"; break; case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR: uhd_async_message += "Packet loss between host and device."; break; case uhd::async_metadata_t::EVENT_CODE_TIME_ERROR: uhd_async_message += "Packet had time that was late."; break; case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW_IN_PACKET: uhd_async_message += "Underflow occurred inside a packet."; break; case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR_IN_BURST: uhd_async_message += "Packet loss within a burst."; break; default: uhd_async_message += "unknown event code"; break; } if (failure) { uwd->logger->log(alert, uhd_async_message); } } /* bool got_async_burst_ack = false; //loop through all messages for the ACK packet (may have underflow messages in queue) while (not got_async_burst_ack and uwd->myUsrp->get_device()->recv_async_msg(async_md, 0.2)){ got_async_burst_ack = (async_md.event_code == uhd::async_metadata_t::EVENT_CODE_BURST_ACK); } //std::cerr << (got_async_burst_ack? "success" : "fail") << std::endl; // */ } #else // ENABLE_UHD fprintf(stderr, "UHDOut UHD DISABLED: Sample %d : valid timestamp %zu + %f\n", frame->fct, tx_second, pps_offset); #endif last_pps = pps_offset; loopend: // swap buffers workerbuffer = (workerbuffer + 1) % 2; } } void OutputUHD::set_parameter(string parameter, string value) { stringstream ss(value); ss.exceptions ( stringstream::failbit | stringstream::badbit ); if (parameter == "txgain") { ss >> myTxGain; #if ENABLE_UHD myUsrp->set_tx_gain(myTxGain); #endif } else if (parameter == "freq") { ss >> myFrequency; #if ENABLE_UHD myUsrp->set_tx_freq(myFrequency); myFrequency = myUsrp->get_tx_freq(); #endif } else if (parameter == "muting") { ss >> myMuting; } else { stringstream ss; ss << "Parameter '" << parameter << "' is not exported by controllable " << get_rc_name(); throw ParameterError(ss.str()); } } string OutputUHD::get_parameter(string parameter) { stringstream ss; if (parameter == "txgain") { ss << myTxGain; } else if (parameter == "freq") { ss << myFrequency; } else if (parameter == "muting") { ss << myMuting; } else { ss << "Parameter '" << parameter << "' is not exported by controllable " << get_rc_name(); throw ParameterError(ss.str()); } return ss.str(); }