/* Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010 Her Majesty the Queen in Right of Canada (Communications Research Center Canada) Copyright (C) 2014 Matthias P. Braendli, matthias.braendli@mpb.li http://opendigitalradio.org */ /* This file is part of ODR-DabMod. ODR-DabMod is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ODR-DabMod is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>. */ #include "OutputUHD.h" #ifdef HAVE_OUTPUT_UHD #include "PcDebug.h" #include "Log.h" #include "RemoteControl.h" #include <cmath> #include <iostream> #include <assert.h> #include <stdexcept> #include <stdio.h> #include <time.h> #include <errno.h> #include <unistd.h> using namespace boost; using namespace std; typedef std::complex<float> complexf; OutputUHD::OutputUHD( OutputUHDConfig& config, Logger& logger) : ModOutput(ModFormat(1), ModFormat(0)), RemoteControllable("uhd"), myLogger(logger), myConf(config), // Since we don't know the buffer size, we cannot initialise // the buffers at object initialisation. first_run(true), activebuffer(1), myDelayBuf(0) { myMuting = 0; // is remote-controllable myStaticDelayUs = 0; // is remote-controllable #if FAKE_UHD MDEBUG("OutputUHD:Using fake UHD output"); #else std::stringstream device; device << myConf.device; if (myConf.masterClockRate != 0) { if (device.str() != "") { device << ","; } device << "master_clock_rate=" << myConf.masterClockRate; } if (myConf.usrpType != "") { if (device.str() != "") { device << ","; } device << "type=" << myConf.usrpType; } MDEBUG("OutputUHD::OutputUHD(device: %s) @ %p\n", device.str().c_str(), this); /* register the parameters that can be remote controlled */ RC_ADD_PARAMETER(txgain, "UHD analog daughterboard TX gain"); RC_ADD_PARAMETER(freq, "UHD transmission frequency"); RC_ADD_PARAMETER(muting, "Mute the output by stopping the transmitter"); RC_ADD_PARAMETER(staticdelay, "Set static delay (uS) between 0 and 96000"); uhd::set_thread_priority_safe(); //create a usrp device MDEBUG("OutputUHD:Creating the usrp device with: %s...\n", device.str().c_str()); myUsrp = uhd::usrp::multi_usrp::make(device.str()); MDEBUG("OutputUHD:Using device: %s...\n", myUsrp->get_pp_string().c_str()); if (myConf.masterClockRate != 0.0) { double master_clk_rate = myUsrp->get_master_clock_rate(); MDEBUG("OutputUHD:Checking master clock rate: %f...\n", master_clk_rate); if (fabs(master_clk_rate - myConf.masterClockRate) > (myConf.masterClockRate * 1e-6)) { throw std::runtime_error("Cannot set USRP master_clock_rate. Aborted."); } } MDEBUG("OutputUHD:Setting REFCLK and PPS input...\n"); myUsrp->set_clock_source(myConf.refclk_src); myUsrp->set_time_source(myConf.pps_src); if (myConf.subDevice != "") { myUsrp->set_tx_subdev_spec(uhd::usrp::subdev_spec_t(myConf.subDevice), uhd::usrp::multi_usrp::ALL_MBOARDS); } std::cerr << "UHD clock source is " << myUsrp->get_clock_source(0) << std::endl; std::cerr << "UHD time source is " << myUsrp->get_time_source(0) << std::endl; //set the tx sample rate MDEBUG("OutputUHD:Setting rate to %d...\n", myConf.sampleRate); myUsrp->set_tx_rate(myConf.sampleRate); MDEBUG("OutputUHD:Actual TX Rate: %f Msps...\n", myUsrp->get_tx_rate()); if (fabs(myUsrp->get_tx_rate() / myConf.sampleRate) > myConf.sampleRate * 1e-6) { MDEBUG("OutputUHD: Cannot set sample\n"); throw std::runtime_error("Cannot set USRP sample rate. Aborted."); } //set the centre frequency MDEBUG("OutputUHD:Setting freq to %f...\n", myConf.frequency); myUsrp->set_tx_freq(myConf.frequency); myConf.frequency = myUsrp->get_tx_freq(); MDEBUG("OutputUHD:Actual frequency: %f\n", myConf.frequency); myUsrp->set_tx_gain(myConf.txgain); MDEBUG("OutputUHD:Actual TX Gain: %f ...\n", myUsrp->get_tx_gain()); MDEBUG("OutputUHD:Mute on missing timestamps: %s ...\n", myConf.muteNoTimestamps ? "enabled" : "disabled"); if (myConf.enableSync && (myConf.pps_src == "none")) { myLogger.level(warn) << "OutputUHD: WARNING:" " you are using synchronous transmission without PPS input!"; struct timespec now; if (clock_gettime(CLOCK_REALTIME, &now)) { perror("OutputUHD:Error: could not get time: "); myLogger.level(error) << "OutputUHD: could not get time"; } else { myUsrp->set_time_now(uhd::time_spec_t(now.tv_sec)); myLogger.level(info) << "OutputUHD: Setting USRP time to " << uhd::time_spec_t(now.tv_sec).get_real_secs(); } } if (myConf.pps_src != "none") { /* handling time for synchronisation: wait until the next full * second, and set the USRP time at next PPS */ struct timespec now; time_t seconds; if (clock_gettime(CLOCK_REALTIME, &now)) { myLogger.level(error) << "OutputUHD: could not get time :" << strerror(errno); throw std::runtime_error("OutputUHD: could not get time."); } else { seconds = now.tv_sec; MDEBUG("OutputUHD:sec+1: %ld ; now: %ld ...\n", seconds+1, now.tv_sec); while (seconds + 1 > now.tv_sec) { usleep(1); if (clock_gettime(CLOCK_REALTIME, &now)) { myLogger.level(error) << "OutputUHD: could not get time :" << strerror(errno); throw std::runtime_error("OutputUHD: could not get time."); } } MDEBUG("OutputUHD:sec+1: %ld ; now: %ld ...\n", seconds+1, now.tv_sec); /* We are now shortly after the second change. */ usleep(200000); // 200ms, we want the PPS to be later myUsrp->set_time_unknown_pps(uhd::time_spec_t(seconds + 2)); myLogger.level(info) << "OutputUHD: Setting USRP time next pps to " << uhd::time_spec_t(seconds + 2).get_real_secs(); } usleep(1e6); myLogger.log(info, "OutputUHD: USRP time %f\n", myUsrp->get_time_now().get_real_secs()); } // preparing output thread worker data uwd.myUsrp = myUsrp; #endif uwd.frame0.ts.timestamp_valid = false; uwd.frame1.ts.timestamp_valid = false; uwd.sampleRate = myConf.sampleRate; uwd.sourceContainsTimestamp = false; uwd.muteNoTimestamps = myConf.muteNoTimestamps; uwd.logger = &myLogger; uwd.refclk_lock_loss_behaviour = myConf.refclk_lock_loss_behaviour; if (myConf.refclk_src == "internal") { uwd.check_refclk_loss = false; } else { uwd.check_refclk_loss = true; } SetDelayBuffer(config.dabMode); shared_ptr<barrier> b(new barrier(2)); mySyncBarrier = b; uwd.sync_barrier = b; MDEBUG("OutputUHD:UHD ready.\n"); } OutputUHD::~OutputUHD() { MDEBUG("OutputUHD::~OutputUHD() @ %p\n", this); worker.stop(); if (!first_run) { free(uwd.frame0.buf); free(uwd.frame1.buf); } } void OutputUHD::SetDelayBuffer(unsigned int dabMode) { // find out the duration of the transmission frame (Table 2 in ETSI 300 401) switch (dabMode) { case 0: // could happen when called from constructor and we take the mode from ETI myTFDurationMs = 0; break; case 1: myTFDurationMs = 96; break; case 2: myTFDurationMs = 24; break; case 3: myTFDurationMs = 24; break; case 4: myTFDurationMs = 48; break; default: throw std::runtime_error("OutputUHD: invalid DAB mode"); } // The buffer size equals the number of samples per transmission frame so // we calculate it by multiplying the duration of the transmission frame // with the samplerate. myDelayBuf.resize(myTFDurationMs * myConf.sampleRate / 1000); } int OutputUHD::process(Buffer* dataIn, Buffer* dataOut) { struct frame_timestamp ts; uwd.muting = myMuting; // On the first call, we must do some allocation and we must fill // the first buffer // We will only wait on the barrier on the subsequent calls to // OutputUHD::process if (first_run) { myLogger.level(debug) << "OutputUHD: UHD initialising..."; worker.start(&uwd); uwd.bufsize = dataIn->getLength(); uwd.frame0.buf = malloc(uwd.bufsize); uwd.frame1.buf = malloc(uwd.bufsize); uwd.sourceContainsTimestamp = myConf.enableSync && myEtiReader->sourceContainsTimestamp(); // The worker begins by transmitting buf0 memcpy(uwd.frame0.buf, dataIn->getData(), uwd.bufsize); myEtiReader->calculateTimestamp(ts); uwd.frame0.ts = ts; switch (myEtiReader->getMode()) { case 1: uwd.fct_increment = 4; break; case 2: case 3: uwd.fct_increment = 1; break; case 4: uwd.fct_increment = 2; break; default: break; } // we only set the delay buffer from the dab mode signaled in ETI if the // dab mode was not set in contructor if (myTFDurationMs == 0) { SetDelayBuffer(myEtiReader->getMode()); } activebuffer = 1; lastLen = uwd.bufsize; first_run = false; myLogger.level(debug) << "OutputUHD: UHD initialising complete"; } else { if (lastLen != dataIn->getLength()) { // I expect that this never happens. myLogger.level(emerg) << "OutputUHD: Fatal error, input length changed from " << lastLen << " to " << dataIn->getLength(); throw std::runtime_error("Non-constant input length!"); } mySyncBarrier.get()->wait(); if (!uwd.running) { worker.stop(); first_run = true; if (uwd.failed_due_to_fct) { throw fct_discontinuity_error(); } else { myLogger.level(error) << "OutputUHD: Error, UHD worker failed"; throw std::runtime_error("UHD worker failed"); } } // write into the our buffer while // the worker sends the other. myEtiReader->calculateTimestamp(ts); uwd.sourceContainsTimestamp = myConf.enableSync && myEtiReader->sourceContainsTimestamp(); // calculate delay uint32_t noSampleDelay = (myStaticDelayUs * (myConf.sampleRate / 1000)) / 1000; uint32_t noByteDelay = noSampleDelay * sizeof(complexf); uint8_t* pInData = (uint8_t*) dataIn->getData(); if (activebuffer == 0) { uint8_t *pTmp = (uint8_t*) uwd.frame0.buf; // copy remain from delaybuf memcpy(pTmp, &myDelayBuf[0], noByteDelay); // copy new data memcpy(&pTmp[noByteDelay], pInData, uwd.bufsize - noByteDelay); // copy remaining data to delay buf memcpy(&myDelayBuf[0], &pInData[uwd.bufsize - noByteDelay], noByteDelay); uwd.frame0.ts = ts; } else if (activebuffer == 1) { uint8_t *pTmp = (uint8_t*) uwd.frame1.buf; // copy remain from delaybuf memcpy(pTmp, &myDelayBuf[0], noByteDelay); // copy new data memcpy(&pTmp[noByteDelay], pInData, uwd.bufsize - noByteDelay); // copy remaining data to delay buf memcpy(&myDelayBuf[0], &pInData[uwd.bufsize - noByteDelay], noByteDelay); uwd.frame1.ts = ts; } activebuffer = (activebuffer + 1) % 2; } return uwd.bufsize; } void UHDWorker::process_errhandler() { try { process(); } catch (fct_discontinuity_error& e) { uwd->logger->level(warn) << e.what(); uwd->failed_due_to_fct = true; } uwd->running = false; uwd->sync_barrier.get()->wait(); uwd->logger->level(warn) << "UHD worker terminated"; } void UHDWorker::process() { int workerbuffer = 0; time_t tx_second = 0; double pps_offset = 0; double last_pps = 2.0; double usrp_time; //const struct timespec hundred_nano = {0, 100}; size_t sizeIn; struct UHDWorkerFrameData* frame; size_t num_acc_samps; //number of accumulated samples //int write_fail_count; // Transmit timeout const double timeout = 0.2; #if FAKE_UHD == 0 uhd::stream_args_t stream_args("fc32"); //complex floats uhd::tx_streamer::sptr myTxStream = uwd->myUsrp->get_tx_stream(stream_args); size_t usrp_max_num_samps = myTxStream->get_max_num_samps(); #else size_t usrp_max_num_samps = 2048; // arbitrarily chosen #endif const complexf* in; uhd::tx_metadata_t md; md.start_of_burst = false; md.end_of_burst = false; int expected_next_fct = -1; while (uwd->running) { bool fct_discontinuity = false; md.has_time_spec = false; md.time_spec = uhd::time_spec_t(0.0); num_acc_samps = 0; //write_fail_count = 0; /* Wait for barrier */ // this wait will hopefully always be the second one // because modulation should be quicker than transmission uwd->sync_barrier.get()->wait(); if (workerbuffer == 0) { frame = &(uwd->frame0); } else if (workerbuffer == 1) { frame = &(uwd->frame1); } else { throw std::runtime_error( "UHDWorker.process: workerbuffer is neither 0 nor 1 !"); } in = reinterpret_cast<const complexf*>(frame->buf); pps_offset = frame->ts.timestamp_pps_offset; // Tx second from MNSC tx_second = frame->ts.timestamp_sec; sizeIn = uwd->bufsize / sizeof(complexf); /* Verify that the FCT value is correct. If we miss one transmission * frame we must interrupt UHD and resync to the timestamps */ if (expected_next_fct != -1) { if (expected_next_fct != (int)frame->ts.fct) { uwd->logger->level(warn) << "OutputUHD: Incorrect expect fct " << frame->ts.fct; fct_discontinuity = true; throw fct_discontinuity_error(); } } expected_next_fct = (frame->ts.fct + uwd->fct_increment) % 250; // Check for ref_lock if (uwd->check_refclk_loss) { try { // TODO: Is this check specific to the B100 and USRP2 ? if (! uwd->myUsrp->get_mboard_sensor("ref_locked", 0).to_bool()) { uwd->logger->log(alert, "OutputUHD: External reference clock lock lost !"); if (uwd->refclk_lock_loss_behaviour == CRASH) { throw std::runtime_error( "OutputUHD: External reference clock lock lost."); } } } catch (uhd::lookup_error &e) { uwd->check_refclk_loss = false; uwd->logger->log(warn, "OutputUHD: This USRP does not have mboard sensor for ext clock loss." " Check disabled."); } } usrp_time = uwd->myUsrp->get_time_now().get_real_secs(); if (uwd->sourceContainsTimestamp) { if (!frame->ts.timestamp_valid) { /* We have not received a full timestamp through * MNSC. We sleep through the frame. */ uwd->logger->level(info) << "OutputUHD: Throwing sample " << frame->ts.fct << " away: incomplete timestamp " << tx_second << " + " << pps_offset; usleep(20000); //TODO should this be TM-dependant ? goto loopend; } md.has_time_spec = true; md.time_spec = uhd::time_spec_t(tx_second, pps_offset); // md is defined, let's do some checks if (md.time_spec.get_real_secs() + timeout < usrp_time) { uwd->logger->level(warn) << "OutputUHD: Timestamp in the past! offset: " << md.time_spec.get_real_secs() - usrp_time << " (" << usrp_time << ")" " frame " << frame->ts.fct << ", tx_second " << tx_second << ", pps " << pps_offset; goto loopend; //skip the frame } #if 0 // Let uhd handle this if (md.time_spec.get_real_secs() > usrp_time + TIMESTAMP_MARGIN_FUTURE) { uwd->logger->level(warn) << "OutputUHD: Timestamp too far in the future! offset: " << md.time_spec.get_real_secs() - usrp_time; usleep(20000); //sleep so as to fill buffers } #endif if (md.time_spec.get_real_secs() > usrp_time + TIMESTAMP_ABORT_FUTURE) { uwd->logger->level(error) << "OutputUHD: Timestamp way too far in the future! offset: " << md.time_spec.get_real_secs() - usrp_time; throw std::runtime_error("Timestamp error. Aborted."); } if (last_pps > pps_offset) { uwd->logger->log(info, "OutputUHD (usrp time: %f): frame %d;" " tx_second %zu; pps %.9f\n", usrp_time, frame->ts.fct, tx_second, pps_offset); } } else { // !uwd->sourceContainsTimestamp if (uwd->muting || uwd->muteNoTimestamps) { /* There was some error decoding the timestamp */ if (uwd->muting) { uwd->logger->log(info, "OutputUHD: Muting sample %d requested\n", frame->ts.fct); } else { uwd->logger->log(info, "OutputUHD: Muting sample %d : no timestamp\n", frame->ts.fct); } usleep(20000); goto loopend; } } PDEBUG("UHDWorker::process:max_num_samps: %zu.\n", usrp_max_num_samps); while (uwd->running && !uwd->muting && (num_acc_samps < sizeIn)) { size_t samps_to_send = std::min(sizeIn - num_acc_samps, usrp_max_num_samps); //ensure the the last packet has EOB set if the timestamps has been //refreshed and need to be reconsidered. //Also, if we saw that the FCT did not increment as expected, which //could be due to a lost incoming packet. md.end_of_burst = ( uwd->sourceContainsTimestamp && (frame->ts.timestamp_refresh || fct_discontinuity) && samps_to_send <= usrp_max_num_samps ); #if FAKE_UHD // This is probably very approximate usleep( (1000000 / uwd->sampleRate) * samps_to_send); size_t num_tx_samps = samps_to_send; #else //send a single packet size_t num_tx_samps = myTxStream->send( &in[num_acc_samps], samps_to_send, md, timeout); #endif num_acc_samps += num_tx_samps; md.time_spec = uhd::time_spec_t(tx_second, pps_offset) + uhd::time_spec_t(0, num_acc_samps/uwd->sampleRate); /* fprintf(stderr, "*** pps_offset %f, md.time_spec %f, usrp->now %f\n", pps_offset, md.time_spec.get_real_secs(), uwd->myUsrp->get_time_now().get_real_secs()); // */ if (num_tx_samps == 0) { #if 1 uwd->logger->log(warn, "UHDWorker::process() unable to write to device, skipping frame!\n"); break; #else // This has been disabled, because if there is a write failure, // we'd better not insist and try to go on transmitting future // frames. // The goal is not to try to send by all means possible. It's // more important to make sure the SFN is not disturbed. fprintf(stderr, "F"); nanosleep(&hundred_nano, NULL); write_fail_count++; if (write_fail_count >= 3) { double ts = md.time_spec.get_real_secs(); double t_usrp = uwd->myUsrp->get_time_now().get_real_secs(); fprintf(stderr, "*** USRP write fail count %d\n", write_fail_count); fprintf(stderr, "*** delta %f, md.time_spec %f, usrp->now %f\n", ts - t_usrp, ts, t_usrp); fprintf(stderr, "UHDWorker::process() unable to write to device, skipping frame!\n"); break; } #endif } #if FAKE_UHD == 0 uhd::async_metadata_t async_md; if (uwd->myUsrp->get_device()->recv_async_msg(async_md, 0)) { const char* uhd_async_message = ""; bool failure = true; switch (async_md.event_code) { case uhd::async_metadata_t::EVENT_CODE_BURST_ACK: failure = false; break; case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW: uhd_async_message = "Underflow"; break; case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR: uhd_async_message = "Packet loss between host and device."; break; case uhd::async_metadata_t::EVENT_CODE_TIME_ERROR: uhd_async_message = "Packet had time that was late."; break; case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW_IN_PACKET: uhd_async_message = "Underflow occurred inside a packet."; break; case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR_IN_BURST: uhd_async_message = "Packet loss within a burst."; break; default: uhd_async_message = "unknown event code"; break; } if (failure) { uwd->logger->level(alert) << "Near frame " << frame->ts.fct << ": Received Async UHD Message '" << uhd_async_message << "'"; } } #endif } last_pps = pps_offset; loopend: // swap buffers workerbuffer = (workerbuffer + 1) % 2; } } void OutputUHD::set_parameter(const string& parameter, const string& value) { stringstream ss(value); ss.exceptions ( stringstream::failbit | stringstream::badbit ); if (parameter == "txgain") { ss >> myConf.txgain; myUsrp->set_tx_gain(myConf.txgain); } else if (parameter == "freq") { ss >> myConf.frequency; myUsrp->set_tx_freq(myConf.frequency); myConf.frequency = myUsrp->get_tx_freq(); } else if (parameter == "muting") { ss >> myMuting; } else if (parameter == "staticdelay") { int64_t adjust; ss >> adjust; if (adjust > (myTFDurationMs * 1000)) { // reset static delay for values outside range myStaticDelayUs = 0; } else { // the new adjust value is added to the existing delay and the result // is wrapped around at TF duration int newStaticDelayUs = myStaticDelayUs + adjust; if (newStaticDelayUs > (myTFDurationMs * 1000)) myStaticDelayUs = newStaticDelayUs - (myTFDurationMs * 1000); else if (newStaticDelayUs < 0) myStaticDelayUs = newStaticDelayUs + (myTFDurationMs * 1000); else myStaticDelayUs = newStaticDelayUs; } } else { stringstream ss; ss << "Parameter '" << parameter << "' is not exported by controllable " << get_rc_name(); throw ParameterError(ss.str()); } } const string OutputUHD::get_parameter(const string& parameter) const { stringstream ss; if (parameter == "txgain") { ss << myConf.txgain; } else if (parameter == "freq") { ss << myConf.frequency; } else if (parameter == "muting") { ss << myMuting; } else if (parameter == "staticdelay") { ss << myStaticDelayUs; } else { ss << "Parameter '" << parameter << "' is not exported by controllable " << get_rc_name(); throw ParameterError(ss.str()); } return ss.str(); } #endif // HAVE_OUTPUT_UHD