/* Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010 Her Majesty the Queen in Right of Canada (Communications Research Center Canada) Copyright (C) 2016 Matthias P. Braendli, matthias.braendli@mpb.li http://opendigitalradio.org */ /* This file is part of ODR-DabMod. ODR-DabMod is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ODR-DabMod is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ODR-DabMod. If not, see . */ #include "OutputUHD.h" #ifdef HAVE_OUTPUT_UHD #include "PcDebug.h" #include "Log.h" #include "RemoteControl.h" #include "Utils.h" #include #include #include #include #include #include #include #include #include #include #include using namespace std; // Maximum number of frames that can wait in uwd.frames static const size_t FRAMES_MAX_SIZE = 2; typedef std::complex complexf; std::string stringtrim(const std::string &s) { auto wsfront = std::find_if_not(s.begin(), s.end(), [](int c){return std::isspace(c);} ); return std::string(wsfront, std::find_if_not(s.rbegin(), std::string::const_reverse_iterator(wsfront), [](int c){return std::isspace(c);} ).base()); } void uhd_msg_handler(uhd::msg::type_t type, const std::string &msg) { if (type == uhd::msg::warning) { etiLog.level(warn) << "UHD Warning: " << msg; } else if (type == uhd::msg::error) { etiLog.level(error) << "UHD Error: " << msg; } else { // do not print very short U messages and such if (stringtrim(msg).size() != 1) { etiLog.level(debug) << "UHD Message: " << msg; } } } // Check function for GPS TIMELOCK sensor from the ODR LEA-M8F board GPSDO bool check_gps_timelock(uhd::usrp::multi_usrp::sptr usrp) { try { std::string sensor_value( usrp->get_mboard_sensor("gps_timelock", 0).to_pp_string()); if (sensor_value.find("TIME LOCKED") == std::string::npos) { etiLog.level(warn) << "OutputUHD: gps_timelock " << sensor_value; return false; } return true; } catch (uhd::lookup_error &e) { etiLog.level(warn) << "OutputUHD: no gps_timelock sensor"; return false; } } // Check function for GPS LOCKED sensor from the Ettus GPSDO bool check_gps_locked(uhd::usrp::multi_usrp::sptr usrp) { try { uhd::sensor_value_t sensor_value( usrp->get_mboard_sensor("gps_locked", 0)); if (not sensor_value.to_bool()) { etiLog.level(warn) << "OutputUHD: gps_locked " << sensor_value.to_pp_string(); return false; } return true; } catch (uhd::lookup_error &e) { etiLog.level(warn) << "OutputUHD: no gps_locked sensor"; return false; } } OutputUHD::OutputUHD( OutputUHDConfig& config) : ModOutput(), RemoteControllable("uhd"), myConf(config), // Since we don't know the buffer size, we cannot initialise // the buffers at object initialisation. first_run(true), gps_fix_verified(false), worker(&uwd), myDelayBuf(0) { myConf.muting = true; // is remote-controllable, and reset by the GPS fix check myConf.staticDelayUs = 0; // is remote-controllable // Variables needed for GPS fix check num_checks_without_gps_fix = 1; first_gps_fix_check.tv_sec = 0; last_gps_fix_check.tv_sec = 0; time_last_frame.tv_sec = 0; std::stringstream device; device << myConf.device; if (myConf.masterClockRate != 0) { if (device.str() != "") { device << ","; } device << "master_clock_rate=" << myConf.masterClockRate; } if (myConf.usrpType != "") { if (device.str() != "") { device << ","; } device << "type=" << myConf.usrpType; } MDEBUG("OutputUHD::OutputUHD(device: %s) @ %p\n", device.str().c_str(), this); /* register the parameters that can be remote controlled */ RC_ADD_PARAMETER(txgain, "UHD analog daughterboard TX gain"); RC_ADD_PARAMETER(freq, "UHD transmission frequency"); RC_ADD_PARAMETER(muting, "Mute the output by stopping the transmitter"); RC_ADD_PARAMETER(staticdelay, "Set static delay (uS) between 0 and 96000"); // TODO: find out how to use boost::bind to give the logger to the // uhd_msg_handler uhd::msg::register_handler(uhd_msg_handler); uhd::set_thread_priority_safe(); //create a usrp device MDEBUG("OutputUHD:Creating the usrp device with: %s...\n", device.str().c_str()); myUsrp = uhd::usrp::multi_usrp::make(device.str()); MDEBUG("OutputUHD:Using device: %s...\n", myUsrp->get_pp_string().c_str()); if (myConf.masterClockRate != 0.0) { double master_clk_rate = myUsrp->get_master_clock_rate(); MDEBUG("OutputUHD:Checking master clock rate: %f...\n", master_clk_rate); if (fabs(master_clk_rate - myConf.masterClockRate) > (myConf.masterClockRate * 1e-6)) { throw std::runtime_error("Cannot set USRP master_clock_rate. Aborted."); } } MDEBUG("OutputUHD:Setting REFCLK and PPS input...\n"); if (myConf.refclk_src == "gpsdo-ettus") { myUsrp->set_clock_source("gpsdo"); } else { myUsrp->set_clock_source(myConf.refclk_src); } myUsrp->set_time_source(myConf.pps_src); if (myConf.subDevice != "") { myUsrp->set_tx_subdev_spec(uhd::usrp::subdev_spec_t(myConf.subDevice), uhd::usrp::multi_usrp::ALL_MBOARDS); } std::cerr << "UHD clock source is " << myUsrp->get_clock_source(0) << std::endl; std::cerr << "UHD time source is " << myUsrp->get_time_source(0) << std::endl; //set the tx sample rate MDEBUG("OutputUHD:Setting rate to %d...\n", myConf.sampleRate); myUsrp->set_tx_rate(myConf.sampleRate); MDEBUG("OutputUHD:Actual TX Rate: %f Msps...\n", myUsrp->get_tx_rate()); if (fabs(myUsrp->get_tx_rate() / myConf.sampleRate) > myConf.sampleRate * 1e-6) { MDEBUG("OutputUHD: Cannot set sample\n"); throw std::runtime_error("Cannot set USRP sample rate. Aborted."); } if (myConf.lo_offset != 0.0) { etiLog.log(info, "OutputUHD:Setting freq to %f with LO offset %f...\n", myConf.frequency, myConf.lo_offset); const auto tr = uhd::tune_request_t(myConf.frequency, myConf.lo_offset); uhd::tune_result_t result = myUsrp->set_tx_freq(tr); etiLog.level(info) << "OutputUHD: " << std::fixed << "Target RF: " << result.target_rf_freq << "Actual RF: " << result.actual_rf_freq << "Target DSP: " << result.target_dsp_freq << "Actual DSP: " << result.actual_dsp_freq; if (result.clipped_rf_freq != result.target_rf_freq) { etiLog.level(warn) << "OutputUHD: clipped RF frequency " << std::fixed << " different from target"; } } else { //set the centre frequency etiLog.log(info, "OutputUHD:Setting freq to %f...\n", myConf.frequency); myUsrp->set_tx_freq(myConf.frequency); } myConf.frequency = myUsrp->get_tx_freq(); MDEBUG("OutputUHD:Actual frequency: %f\n", myConf.frequency); myUsrp->set_tx_gain(myConf.txgain); MDEBUG("OutputUHD:Actual TX Gain: %f ...\n", myUsrp->get_tx_gain()); MDEBUG("OutputUHD:Mute on missing timestamps: %s ...\n", myConf.muteNoTimestamps ? "enabled" : "disabled"); // preparing output thread worker data uwd.myUsrp = myUsrp; uwd.sampleRate = myConf.sampleRate; uwd.sourceContainsTimestamp = false; uwd.muteNoTimestamps = myConf.muteNoTimestamps; uwd.refclk_lock_loss_behaviour = myConf.refclk_lock_loss_behaviour; uwd.gpsdo_is_ettus = false; if (myConf.refclk_src == "internal") { uwd.check_refclk_loss = false; uwd.check_gpsfix = false; } else if (myConf.refclk_src == "gpsdo") { uwd.check_refclk_loss = true; uwd.check_gpsfix = (myConf.maxGPSHoldoverTime != 0); } else if (myConf.refclk_src == "gpsdo-ettus") { uwd.check_refclk_loss = true; uwd.check_gpsfix = (myConf.maxGPSHoldoverTime != 0); uwd.gpsdo_is_ettus = true; } else { uwd.check_refclk_loss = true; uwd.check_gpsfix = false; } SetDelayBuffer(myConf.dabMode); MDEBUG("OutputUHD:UHD ready.\n"); } OutputUHD::~OutputUHD() { MDEBUG("OutputUHD::~OutputUHD() @ %p\n", this); } void OutputUHD::setETISource(EtiSource *etiSource) { myEtiSource = etiSource; } int transmission_frame_duration_ms(unsigned int dabMode) { switch (dabMode) { // could happen when called from constructor and we take the mode from ETI case 0: return 0; case 1: return 96; case 2: return 24; case 3: return 24; case 4: return 48; default: throw std::runtime_error("OutputUHD: invalid DAB mode"); } } void OutputUHD::SetDelayBuffer(unsigned int dabMode) { // find out the duration of the transmission frame (Table 2 in ETSI 300 401) myTFDurationMs = transmission_frame_duration_ms(dabMode); // The buffer size equals the number of samples per transmission frame so // we calculate it by multiplying the duration of the transmission frame // with the samplerate. myDelayBuf.resize(myTFDurationMs * myConf.sampleRate / 1000); } int OutputUHD::process(Buffer* dataIn) { uwd.muting = myConf.muting; if (not gps_fix_verified) { if (uwd.check_gpsfix) { initial_gps_check(); if (num_checks_without_gps_fix == 0) { set_usrp_time(); gps_fix_verified = true; myConf.muting = false; } } else { set_usrp_time(); gps_fix_verified = true; myConf.muting = false; } } else { if (first_run) { etiLog.level(debug) << "OutputUHD: UHD initialising..."; // we only set the delay buffer from the dab mode signaled in ETI if the // dab mode was not set in contructor if (myTFDurationMs == 0) { SetDelayBuffer(myEtiSource->getMode()); } worker.start(&uwd); lastLen = dataIn->getLength(); first_run = false; etiLog.level(debug) << "OutputUHD: UHD initialising complete"; } if (lastLen != dataIn->getLength()) { // I expect that this never happens. etiLog.level(emerg) << "OutputUHD: Fatal error, input length changed from " << lastLen << " to " << dataIn->getLength(); throw std::runtime_error("Non-constant input length!"); } uwd.sourceContainsTimestamp = myConf.enableSync && myEtiSource->sourceContainsTimestamp(); if (uwd.check_gpsfix) { try { check_gps(); } catch (std::runtime_error& e) { uwd.running = false; etiLog.level(error) << e.what(); } } // Prepare the frame for the worker UHDWorkerFrameData frame; frame.buf.resize(dataIn->getLength()); // calculate delay and fill buffer uint32_t noSampleDelay = (myConf.staticDelayUs * (myConf.sampleRate / 1000)) / 1000; uint32_t noByteDelay = noSampleDelay * sizeof(complexf); const uint8_t* pInData = (uint8_t*)dataIn->getData(); uint8_t *pTmp = &frame.buf[0]; if (noByteDelay) { // copy remain from delaybuf memcpy(pTmp, &myDelayBuf[0], noByteDelay); // copy new data memcpy(&pTmp[noByteDelay], pInData, dataIn->getLength() - noByteDelay); // copy remaining data to delay buf memcpy(&myDelayBuf[0], &pInData[dataIn->getLength() - noByteDelay], noByteDelay); } else { std::copy(pInData, pInData + dataIn->getLength(), frame.buf.begin()); } myEtiSource->calculateTimestamp(frame.ts); if (!uwd.running) { worker.stop(); first_run = true; etiLog.level(error) << "OutputUHD: Error, UHD worker failed"; throw std::runtime_error("UHD worker failed"); } if (frame.ts.fct == -1) { etiLog.level(info) << "OutputUHD: dropping one frame with invalid FCT"; } else { while (true) { size_t num_frames = uwd.frames.push_wait_if_full(frame, FRAMES_MAX_SIZE); etiLog.log(trace, "UHD,push %zu", num_frames); break; } } } return dataIn->getLength(); } void OutputUHD::set_usrp_time() { if (myConf.enableSync && (myConf.pps_src == "none")) { etiLog.level(warn) << "OutputUHD: WARNING:" " you are using synchronous transmission without PPS input!"; struct timespec now; if (clock_gettime(CLOCK_REALTIME, &now)) { perror("OutputUHD:Error: could not get time: "); etiLog.level(error) << "OutputUHD: could not get time"; } else { myUsrp->set_time_now(uhd::time_spec_t(now.tv_sec)); etiLog.level(info) << "OutputUHD: Setting USRP time to " << std::fixed << uhd::time_spec_t(now.tv_sec).get_real_secs(); } } if (myConf.pps_src != "none") { /* handling time for synchronisation: wait until the next full * second, and set the USRP time at next PPS */ struct timespec now; time_t seconds; if (clock_gettime(CLOCK_REALTIME, &now)) { etiLog.level(error) << "OutputUHD: could not get time :" << strerror(errno); throw std::runtime_error("OutputUHD: could not get time."); } else { seconds = now.tv_sec; MDEBUG("OutputUHD:sec+1: %ld ; now: %ld ...\n", seconds+1, now.tv_sec); while (seconds + 1 > now.tv_sec) { usleep(1); if (clock_gettime(CLOCK_REALTIME, &now)) { etiLog.level(error) << "OutputUHD: could not get time :" << strerror(errno); throw std::runtime_error("OutputUHD: could not get time."); } } MDEBUG("OutputUHD:sec+1: %ld ; now: %ld ...\n", seconds+1, now.tv_sec); /* We are now shortly after the second change. */ usleep(200000); // 200ms, we want the PPS to be later myUsrp->set_time_unknown_pps(uhd::time_spec_t(seconds + 2)); etiLog.level(info) << "OutputUHD: Setting USRP time next pps to " << std::fixed << uhd::time_spec_t(seconds + 2).get_real_secs(); } usleep(1e6); etiLog.log(info, "OutputUHD: USRP time %f\n", myUsrp->get_time_now().get_real_secs()); } } void OutputUHD::initial_gps_check() { if (first_gps_fix_check.tv_sec == 0) { etiLog.level(info) << "Waiting for GPS fix"; if (clock_gettime(CLOCK_MONOTONIC, &first_gps_fix_check) != 0) { stringstream ss; ss << "clock_gettime failure: " << strerror(errno); throw std::runtime_error(ss.str()); } } check_gps(); if (last_gps_fix_check.tv_sec > first_gps_fix_check.tv_sec + initial_gps_fix_wait) { stringstream ss; ss << "GPS did not show time lock in " << initial_gps_fix_wait << " seconds"; throw std::runtime_error(ss.str()); } if (time_last_frame.tv_sec == 0) { if (clock_gettime(CLOCK_MONOTONIC, &time_last_frame) != 0) { stringstream ss; ss << "clock_gettime failure: " << strerror(errno); throw std::runtime_error(ss.str()); } } struct timespec now; if (clock_gettime(CLOCK_MONOTONIC, &now) != 0) { stringstream ss; ss << "clock_gettime failure: " << strerror(errno); throw std::runtime_error(ss.str()); } long delta_us = timespecdiff_us(time_last_frame, now); long wait_time_us = transmission_frame_duration_ms(myConf.dabMode); if (wait_time_us - delta_us > 0) { usleep(wait_time_us - delta_us); } time_last_frame.tv_nsec += wait_time_us * 1000; if (time_last_frame.tv_nsec >= 1000000000L) { time_last_frame.tv_nsec -= 1000000000L; time_last_frame.tv_sec++; } } void OutputUHD::check_gps() { struct timespec time_now; if (clock_gettime(CLOCK_MONOTONIC, &time_now) != 0) { stringstream ss; ss << "clock_gettime failure: " << strerror(errno); throw std::runtime_error(ss.str()); } // Divide interval by two because we alternate between // launch and check if (uwd.check_gpsfix and last_gps_fix_check.tv_sec + gps_fix_check_interval/2.0 < time_now.tv_sec) { last_gps_fix_check = time_now; // Alternate between launching thread and checking the // result. if (gps_fix_task.joinable()) { if (gps_fix_future.has_value()) { gps_fix_future.wait(); gps_fix_task.join(); if (not gps_fix_future.get()) { if (num_checks_without_gps_fix == 0) { etiLog.level(alert) << "OutputUHD: GPS Time Lock lost"; } num_checks_without_gps_fix++; } else { if (num_checks_without_gps_fix) { etiLog.level(info) << "OutputUHD: GPS Time Lock recovered"; } num_checks_without_gps_fix = 0; } if (gps_fix_check_interval * num_checks_without_gps_fix > myConf.maxGPSHoldoverTime) { std::stringstream ss; ss << "Lost GPS Time Lock for " << gps_fix_check_interval * num_checks_without_gps_fix << " seconds"; throw std::runtime_error(ss.str()); } } } else { // Checking the sensor here takes too much // time, it has to be done in a separate thread. if (uwd.gpsdo_is_ettus) { gps_fix_pt = boost::packaged_task( boost::bind(check_gps_locked, myUsrp) ); } else { gps_fix_pt = boost::packaged_task( boost::bind(check_gps_timelock, myUsrp) ); } gps_fix_future = gps_fix_pt.get_future(); gps_fix_task = boost::thread(boost::move(gps_fix_pt)); } } } //============================ UHD Worker ======================== void UHDWorker::process_errhandler() { // Set thread priority to realtime if (int ret = set_realtime_prio(1)) { etiLog.level(error) << "Could not set priority for UHD worker:" << ret; } set_thread_name("uhdworker"); process(); uwd->running = false; etiLog.level(warn) << "UHD worker terminated"; } void UHDWorker::process() { last_tx_time_initialised = false; uhd::stream_args_t stream_args("fc32"); //complex floats myTxStream = uwd->myUsrp->get_tx_stream(stream_args); md.start_of_burst = false; md.end_of_burst = false; num_underflows = 0; num_late_packets = 0; while (uwd->running) { md.has_time_spec = false; md.time_spec = uhd::time_spec_t(0.0); struct UHDWorkerFrameData frame; etiLog.log(trace, "UHD,wait"); uwd->frames.wait_and_pop(frame); etiLog.log(trace, "UHD,pop"); handle_frame(&frame); } } void UHDWorker::handle_frame(const struct UHDWorkerFrameData *frame) { // Transmit timeout static const double tx_timeout = 20.0; // Check for ref_lock if (uwd->check_refclk_loss) { try { // TODO: Is this check specific to the B100 and USRP2 ? if (! uwd->myUsrp->get_mboard_sensor("ref_locked", 0).to_bool()) { etiLog.log(alert, "OutputUHD: External reference clock lock lost !"); if (uwd->refclk_lock_loss_behaviour == CRASH) { throw std::runtime_error( "OutputUHD: External reference clock lock lost."); } } } catch (uhd::lookup_error &e) { uwd->check_refclk_loss = false; etiLog.log(warn, "OutputUHD: This USRP does not have mboard sensor for ext clock loss." " Check disabled."); } } double usrp_time = uwd->myUsrp->get_time_now().get_real_secs(); bool timestamp_discontinuity = false; if (uwd->sourceContainsTimestamp) { // Tx time from MNSC and TIST uint32_t tx_second = frame->ts.timestamp_sec; uint32_t tx_pps = frame->ts.timestamp_pps; if (!frame->ts.timestamp_valid) { /* We have not received a full timestamp through * MNSC. We sleep through the frame. */ etiLog.level(info) << "OutputUHD: Throwing sample " << frame->ts.fct << " away: incomplete timestamp " << tx_second << " / " << tx_pps; usleep(20000); //TODO should this be TM-dependant ? return; } if (last_tx_time_initialised) { const size_t sizeIn = frame->buf.size() / sizeof(complexf); uint64_t increment = (uint64_t)sizeIn * 16384000ul / (uint64_t)uwd->sampleRate; // samps * ticks/s / (samps/s) // (samps * ticks * s) / (s * samps) // ticks uint32_t expected_sec = last_tx_second + increment / 16384000ul; uint32_t expected_pps = last_tx_pps + increment % 16384000ul; while (expected_pps >= 16384000) { expected_sec++; expected_pps -= 16384000; } if (expected_sec != tx_second or expected_pps != tx_pps) { etiLog.level(warn) << "OutputUHD: timestamp irregularity!" << std::fixed << " Expected " << expected_sec << "+" << (double)expected_pps/16384000.0 << "(" << expected_pps << ")" << " Got " << tx_second << "+" << (double)tx_pps/16384000.0 << "(" << tx_pps << ")"; timestamp_discontinuity = true; } } last_tx_second = tx_second; last_tx_pps = tx_pps; last_tx_time_initialised = true; double pps_offset = tx_pps / 16384000.0; md.has_time_spec = true; md.time_spec = uhd::time_spec_t(tx_second, pps_offset); etiLog.log(trace, "UHD,tist %f", md.time_spec.get_real_secs()); // md is defined, let's do some checks if (md.time_spec.get_real_secs() + tx_timeout < usrp_time) { etiLog.level(warn) << "OutputUHD: Timestamp in the past! offset: " << std::fixed << md.time_spec.get_real_secs() - usrp_time << " (" << usrp_time << ")" " frame " << frame->ts.fct << ", tx_second " << tx_second << ", pps " << pps_offset; return; } if (md.time_spec.get_real_secs() > usrp_time + TIMESTAMP_ABORT_FUTURE) { etiLog.level(error) << "OutputUHD: Timestamp way too far in the future! offset: " << std::fixed << md.time_spec.get_real_secs() - usrp_time; throw std::runtime_error("Timestamp error. Aborted."); } } else { // !uwd->sourceContainsTimestamp if (uwd->muting || uwd->muteNoTimestamps) { /* There was some error decoding the timestamp */ if (uwd->muting) { etiLog.log(info, "OutputUHD: Muting sample %d requested\n", frame->ts.fct); } else { etiLog.log(info, "OutputUHD: Muting sample %d : no timestamp\n", frame->ts.fct); } usleep(20000); return; } } tx_frame(frame, timestamp_discontinuity); auto time_now = std::chrono::steady_clock::now(); if (last_print_time + std::chrono::seconds(1) < time_now) { if (num_underflows or num_late_packets) { etiLog.log(info, "OutputUHD status (usrp time: %f): " "%d underruns and %d late packets since last status.\n", usrp_time, num_underflows, num_late_packets); } num_underflows = 0; num_late_packets = 0; last_print_time = time_now; } } void UHDWorker::tx_frame(const struct UHDWorkerFrameData *frame, bool ts_update) { const double tx_timeout = 20.0; const size_t sizeIn = frame->buf.size() / sizeof(complexf); const complexf* in_data = reinterpret_cast(&frame->buf[0]); size_t usrp_max_num_samps = myTxStream->get_max_num_samps(); size_t num_acc_samps = 0; //number of accumulated samples while (uwd->running && !uwd->muting && (num_acc_samps < sizeIn)) { size_t samps_to_send = std::min(sizeIn - num_acc_samps, usrp_max_num_samps); uhd::tx_metadata_t md_tx = md; //ensure the the last packet has EOB set if the timestamps has been //refreshed and need to be reconsidered. md_tx.end_of_burst = ( uwd->sourceContainsTimestamp && (frame->ts.timestamp_refresh or ts_update) && samps_to_send <= usrp_max_num_samps ); //send a single packet size_t num_tx_samps = myTxStream->send( &in_data[num_acc_samps], samps_to_send, md_tx, tx_timeout); etiLog.log(trace, "UHD,sent %zu of %zu", num_tx_samps, samps_to_send); num_acc_samps += num_tx_samps; md_tx.time_spec = md.time_spec + uhd::time_spec_t(0, num_tx_samps/uwd->sampleRate); if (num_tx_samps == 0) { etiLog.log(warn, "UHDWorker::process() unable to write to device, skipping frame!\n"); break; } print_async_metadata(frame); } } void UHDWorker::print_async_metadata(const struct UHDWorkerFrameData *frame) { uhd::async_metadata_t async_md; if (uwd->myUsrp->get_device()->recv_async_msg(async_md, 0)) { const char* uhd_async_message = ""; bool failure = false; switch (async_md.event_code) { case uhd::async_metadata_t::EVENT_CODE_BURST_ACK: break; case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW: uhd_async_message = "Underflow"; num_underflows++; break; case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR: uhd_async_message = "Packet loss between host and device."; failure = true; break; case uhd::async_metadata_t::EVENT_CODE_TIME_ERROR: uhd_async_message = "Packet had time that was late."; num_late_packets++; break; case uhd::async_metadata_t::EVENT_CODE_UNDERFLOW_IN_PACKET: uhd_async_message = "Underflow occurred inside a packet."; failure = true; break; case uhd::async_metadata_t::EVENT_CODE_SEQ_ERROR_IN_BURST: uhd_async_message = "Packet loss within a burst."; failure = true; break; default: uhd_async_message = "unknown event code"; failure = true; break; } if (failure) { etiLog.level(alert) << "Near frame " << frame->ts.fct << ": Received Async UHD Message '" << uhd_async_message << "'"; } } } // ======================================= // Remote Control for UHD // ======================================= void OutputUHD::set_parameter(const string& parameter, const string& value) { stringstream ss(value); ss.exceptions ( stringstream::failbit | stringstream::badbit ); if (parameter == "txgain") { ss >> myConf.txgain; myUsrp->set_tx_gain(myConf.txgain); } else if (parameter == "freq") { ss >> myConf.frequency; myUsrp->set_tx_freq(myConf.frequency); myConf.frequency = myUsrp->get_tx_freq(); } else if (parameter == "muting") { ss >> myConf.muting; } else if (parameter == "staticdelay") { int64_t adjust; ss >> adjust; if (adjust > (myTFDurationMs * 1000)) { // reset static delay for values outside range myConf.staticDelayUs = 0; } else { // the new adjust value is added to the existing delay and the result // is wrapped around at TF duration int newStaticDelayUs = myConf.staticDelayUs + adjust; if (newStaticDelayUs > (myTFDurationMs * 1000)) myConf.staticDelayUs = newStaticDelayUs - (myTFDurationMs * 1000); else if (newStaticDelayUs < 0) myConf.staticDelayUs = newStaticDelayUs + (myTFDurationMs * 1000); else myConf.staticDelayUs = newStaticDelayUs; } } else { stringstream ss; ss << "Parameter '" << parameter << "' is not exported by controllable " << get_rc_name(); throw ParameterError(ss.str()); } } const string OutputUHD::get_parameter(const string& parameter) const { stringstream ss; if (parameter == "txgain") { ss << myConf.txgain; } else if (parameter == "freq") { ss << myConf.frequency; } else if (parameter == "muting") { ss << myConf.muting; } else if (parameter == "staticdelay") { ss << myConf.staticDelayUs; } else { ss << "Parameter '" << parameter << "' is not exported by controllable " << get_rc_name(); throw ParameterError(ss.str()); } return ss.str(); } #endif // HAVE_OUTPUT_UHD