/*
Copyright (C) 2005, 2206, 2007, 2008, 2009, 2010, 2011 Her Majesty
the Queen in Right of Canada (Communications Research Center Canada)
Copyright (C) 2023
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
*/
/*
This file is part of ODR-DabMod.
ODR-DabMod is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DabMod is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DabMod. If not, see .
*/
#include "GuardIntervalInserter.h"
#include "PcDebug.h"
#include
#include
#include
#include
GuardIntervalInserter::Params::Params(
size_t nbSymbols,
size_t spacing,
size_t nullSize,
size_t symSize,
size_t& windowOverlap) :
nbSymbols(nbSymbols),
spacing(spacing),
nullSize(nullSize),
symSize(symSize),
windowOverlap(windowOverlap) {}
GuardIntervalInserter::GuardIntervalInserter(
size_t nbSymbols,
size_t spacing,
size_t nullSize,
size_t symSize,
size_t& windowOverlap,
FFTEngine fftEngine) :
ModCodec(),
RemoteControllable("guardinterval"),
m_fftEngine(fftEngine),
m_params(nbSymbols, spacing, nullSize, symSize, windowOverlap)
{
if (nullSize == 0) {
throw std::logic_error("NULL symbol must be present");
}
RC_ADD_PARAMETER(windowlen, "Window length for OFDM windowng [0 to disable]");
/* We use a raised-cosine window for the OFDM windowing.
* Each symbol is extended on both sides by windowOverlap samples.
*
*
* Sym n |####################|
* Sym n+1 |####################|
*
* We now extend the symbols by windowOverlap (one dash)
*
* Sym n extended -|####################|-
* Sym n+1 extended -|####################|-
*
* The windows are raised-cosine:
* ____________________
* Sym n window / \
* ... ____/ \___________ ...
*
* Sym n+1 window ____________________
* / \
* ... ________________/ \__ ...
*
* The window length is 2*windowOverlap.
*/
update_window(windowOverlap);
PDEBUG("GuardIntervalInserter::GuardIntervalInserter"
"(%zu, %zu, %zu, %zu, %zu) @ %p\n",
nbSymbols, spacing, nullSize, symSize, windowOverlap, this);
}
void GuardIntervalInserter::update_window(size_t new_window_overlap)
{
std::lock_guard lock(m_params.windowMutex);
m_params.windowOverlap = new_window_overlap;
// m_params.window only contains the rising window edge.
m_params.window.resize(2*m_params.windowOverlap);
for (size_t i = 0; i < 2*m_params.windowOverlap; i++) {
m_params.window[i] = (float)(0.5 * (1.0 - cos(M_PI * i / (2*m_params.windowOverlap - 1))));
}
}
template
int do_process(const GuardIntervalInserter::Params& p, Buffer* const dataIn, Buffer* dataOut)
{
PDEBUG("GuardIntervalInserter do_process(dataIn: %p, dataOut: %p)\n",
dataIn, dataOut);
// Every symbol overlaps over a length of windowOverlap with
// the previous symbol, and with the next symbol. First symbol
// receives no prefix window, because we don't remember the
// last symbol from the previous TF (yet). Last symbol also
// receives no suffix window, for the same reason.
// Overall output buffer length must stay independent of the windowing.
dataOut->setLength((p.nullSize + (p.nbSymbols * p.symSize)) * sizeof(T));
const T* in = reinterpret_cast(dataIn->getData());
T* out = reinterpret_cast(dataOut->getData());
size_t sizeIn = dataIn->getLength() / sizeof(T);
const size_t num_symbols = p.nbSymbols + 1;
if (sizeIn != num_symbols * p.spacing)
{
PDEBUG("Nb symbols: %zu\n", p.nbSymbols);
PDEBUG("Spacing: %zu\n", p.spacing);
PDEBUG("Null size: %zu\n", p.nullSize);
PDEBUG("Sym size: %zu\n", p.symSize);
PDEBUG("\n%zu != %zu\n", sizeIn, (p.nbSymbols + 1) * p.spacing);
throw std::runtime_error(
"GuardIntervalInserter::process input size not valid!");
}
// TODO remember the end of the last TF so that we can do some
// windowing too.
std::lock_guard lock(p.windowMutex);
if (p.windowOverlap) { if constexpr (std::is_same_v) {
{
// Handle Null symbol separately because it is longer
const size_t prefixlength = p.nullSize - p.spacing;
// end = spacing
memcpy(out, &in[p.spacing - prefixlength],
prefixlength * sizeof(T));
memcpy(&out[prefixlength], in, (p.spacing - p.windowOverlap) * sizeof(T));
// The remaining part of the symbol must have half of the window applied,
// sloping down from 1 to 0.5
for (size_t i = 0; i < p.windowOverlap; i++) {
const size_t out_ix = prefixlength + p.spacing - p.windowOverlap + i;
const size_t in_ix = p.spacing - p.windowOverlap + i;
out[out_ix] = in[in_ix] * p.window[2*p.windowOverlap - (i+1)];
}
// Suffix is taken from the beginning of the symbol, and sees the other
// half of the window applied.
for (size_t i = 0; i < p.windowOverlap; i++) {
const size_t out_ix = prefixlength + p.spacing + i;
out[out_ix] = in[i] * p.window[p.windowOverlap - (i+1)];
}
in += p.spacing;
out += p.nullSize;
// out is now pointing to the proper end of symbol. There are
// windowOverlap samples ahead that were already written.
}
// Data symbols
for (size_t sym_ix = 0; sym_ix < p.nbSymbols; sym_ix++) {
/* _ix variables are indices into in[], _ox variables are
* indices for out[] */
const ssize_t start_rise_ox = -p.windowOverlap;
const size_t start_rise_ix = 2 * p.spacing - p.symSize - p.windowOverlap;
/*
const size_t start_real_symbol_ox = 0;
const size_t start_real_symbol_ix = 2 * p.spacing - p.symSize;
*/
const ssize_t end_rise_ox = p.windowOverlap;
const size_t end_rise_ix = 2 * p.spacing - p.symSize + p.windowOverlap;
const ssize_t end_cyclic_prefix_ox = p.symSize - p.spacing;
/* end_cyclic_prefix_ix = end of symbol
const size_t begin_fall_ox = p.symSize - p.windowOverlap;
const size_t begin_fall_ix = p.spacing - p.windowOverlap;
const size_t end_real_symbol_ox = p.symSize;
end_real_symbol_ix = end of symbol
const size_t end_fall_ox = p.symSize + p.windowOverlap;
const size_t end_fall_ix = p.spacing + p.windowOverlap;
*/
ssize_t ox = start_rise_ox;
size_t ix = start_rise_ix;
for (size_t i = 0; ix < end_rise_ix; i++) {
out[ox] += in[ix] * p.window.at(i);
ix++;
ox++;
}
assert(ox == end_rise_ox);
const size_t remaining_prefix_length = end_cyclic_prefix_ox - end_rise_ox;
memcpy( &out[ox], &in[ix],
remaining_prefix_length * sizeof(T));
ox += remaining_prefix_length;
assert(ox == end_cyclic_prefix_ox);
ix = 0;
const bool last_symbol = (sym_ix + 1 >= p.nbSymbols);
if (last_symbol) {
// No windowing at all at end
memcpy(&out[ox], &in[ix], p.spacing * sizeof(T));
ox += p.spacing;
}
else {
// Copy the middle part of the symbol, p.windowOverlap samples
// short of the end.
memcpy( &out[ox],
&in[ix],
(p.spacing - p.windowOverlap) * sizeof(T));
ox += p.spacing - p.windowOverlap;
ix += p.spacing - p.windowOverlap;
assert(ox == (ssize_t)(p.symSize - p.windowOverlap));
// Apply window from 1 to 0.5 for the end of the symbol
for (size_t i = 0; ox < (ssize_t)p.symSize; i++) {
out[ox] = in[ix] * p.window[2*p.windowOverlap - (i+1)];
ox++;
ix++;
}
assert(ix == p.spacing);
ix = 0;
// Cyclic suffix, with window from 0.5 to 0
for (size_t i = 0; ox < (ssize_t)(p.symSize + p.windowOverlap); i++) {
out[ox] = in[ix] * p.window[p.windowOverlap - (i+1)];
ox++;
ix++;
}
assert(ix == p.windowOverlap);
}
out += p.symSize;
in += p.spacing;
// out is now pointing to the proper end of symbol. There are
// windowOverlap samples ahead that were already written.
}
} }
else {
// Handle Null symbol separately because it is longer
// end - (nullSize - spacing) = 2 * spacing - nullSize
memcpy(out, &in[2 * p.spacing - p.nullSize],
(p.nullSize - p.spacing) * sizeof(T));
memcpy(&out[p.nullSize - p.spacing], in, p.spacing * sizeof(T));
in += p.spacing;
out += p.nullSize;
// Data symbols
for (size_t i = 0; i < p.nbSymbols; ++i) {
// end - (symSize - spacing) = 2 * spacing - symSize
memcpy(out, &in[2 * p.spacing - p.symSize],
(p.symSize - p.spacing) * sizeof(T));
memcpy(&out[p.symSize - p.spacing], in, p.spacing * sizeof(T));
in += p.spacing;
out += p.symSize;
}
}
return sizeIn;
}
int GuardIntervalInserter::process(Buffer* const dataIn, Buffer* dataOut)
{
switch (m_fftEngine) {
case FFTEngine::FFTW:
return do_process(m_params, dataIn, dataOut);
case FFTEngine::KISS:
if (m_params.windowOverlap) {
throw std::runtime_error("fixed point and ofdm windowing not supported");
}
return do_process(m_params, dataIn, dataOut);
case FFTEngine::DEXTER:
return do_process(m_params, dataIn, dataOut);
}
throw std::logic_error("Unhandled fftEngine variant");
}
void GuardIntervalInserter::set_parameter(
const std::string& parameter,
const std::string& value)
{
using namespace std;
stringstream ss(value);
ss.exceptions ( stringstream::failbit | stringstream::badbit );
if (parameter == "windowlen") {
size_t new_window_overlap = 0;
ss >> new_window_overlap;
update_window(new_window_overlap);
}
else {
stringstream ss_err;
ss_err << "Parameter '" << parameter <<
"' is not exported by controllable " << get_rc_name();
throw ParameterError(ss_err.str());
}
}
const std::string GuardIntervalInserter::get_parameter(const std::string& parameter) const
{
using namespace std;
stringstream ss;
if (parameter == "windowlen") {
ss << m_params.windowOverlap;
}
else {
ss << "Parameter '" << parameter <<
"' is not exported by controllable " << get_rc_name();
throw ParameterError(ss.str());
}
return ss.str();
}
const json::map_t GuardIntervalInserter::get_all_values() const
{
json::map_t map;
map["windowlen"].v = m_params.windowOverlap;
return map;
}