/* Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012 Her Majesty the Queen in Right of Canada (Communications Research Center Canada) Copyright (C) 2015 Matthias P. Braendli, matthias.braendli@mpb.li http://opendigitalradio.org */ /* This file is part of ODR-DabMod. ODR-DabMod is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ODR-DabMod is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ODR-DabMod. If not, see . */ #include #include #include "DabModulator.h" #include "PcDebug.h" #include "FrameMultiplexer.h" #include "PrbsGenerator.h" #include "BlockPartitioner.h" #include "QpskSymbolMapper.h" #include "FrequencyInterleaver.h" #include "PhaseReference.h" #include "DifferentialModulator.h" #include "NullSymbol.h" #include "SignalMultiplexer.h" #include "CicEqualizer.h" #include "OfdmGenerator.h" #include "GainControl.h" #include "GuardIntervalInserter.h" #include "Resampler.h" #include "ConvEncoder.h" #include "FIRFilter.h" #include "TII.h" #include "PuncturingEncoder.h" #include "TimeInterleaver.h" #include "TimestampDecoder.h" #include "RemoteControl.h" #include "Log.h" DabModulator::DabModulator( double& tist_offset_s, unsigned tist_delay_stages, tii_config_t& tiiConfig, unsigned outputRate, unsigned clockRate, unsigned dabMode, GainMode gainMode, float& digGain, float normalise, std::string& filterTapsFilename ) : ModCodec(ModFormat(1), ModFormat(0)), myOutputRate(outputRate), myClockRate(clockRate), myDabMode(dabMode), myGainMode(gainMode), myDigGain(digGain), myNormalise(normalise), myEtiReader(tist_offset_s, tist_delay_stages), myFlowgraph(NULL), myFilterTapsFilename(filterTapsFilename), myTiiConfig(tiiConfig) { PDEBUG("DabModulator::DabModulator(%u, %u, %u, %u) @ %p\n", outputRate, clockRate, dabMode, gainMode, this); if (myDabMode == 0) { setMode(2); } else { setMode(myDabMode); } } DabModulator::~DabModulator() { PDEBUG("DabModulator::~DabModulator() @ %p\n", this); delete myFlowgraph; } void DabModulator::setMode(unsigned mode) { switch (mode) { case 1: myNbSymbols = 76; myNbCarriers = 1536; mySpacing = 2048; myNullSize = 2656; mySymSize = 2552; myFicSizeOut = 288; break; case 2: myNbSymbols = 76; myNbCarriers = 384; mySpacing = 512; myNullSize = 664; mySymSize = 638; myFicSizeOut = 288; break; case 3: myNbSymbols = 153; myNbCarriers = 192; mySpacing = 256; myNullSize = 345; mySymSize = 319; myFicSizeOut = 384; break; case 4: myNbSymbols = 76; myNbCarriers = 768; mySpacing = 1024; myNullSize = 1328; mySymSize = 1276; myFicSizeOut = 288; break; default: throw std::runtime_error("DabModulator::setMode invalid mode size"); } myOutputFormat.size((size_t)((myNullSize + (myNbSymbols * mySymSize)) * sizeof(complexf) / 2048000.0 * myOutputRate)); } int DabModulator::process(Buffer* const dataIn, Buffer* dataOut) { using namespace std; PDEBUG("DabModulator::process(dataIn: %p, dataOut: %p)\n", dataIn, dataOut); myEtiReader.process(dataIn); if (myFlowgraph == NULL) { unsigned mode = myEtiReader.getMode(); if (myDabMode != 0) { mode = myDabMode; } else if (mode == 0) { mode = 4; } setMode(mode); myFlowgraph = new Flowgraph(); //////////////////////////////////////////////////////////////// // CIF data initialisation //////////////////////////////////////////////////////////////// auto cifPrbs = make_shared(864 * 8, 0x110); auto cifMux = make_shared( myFicSizeOut + 864 * 8, &myEtiReader.getSubchannels()); auto cifPart = make_shared(mode, myEtiReader.getFp()); auto cifMap = make_shared(myNbCarriers); auto cifRef = make_shared(mode); auto cifFreq = make_shared(mode); auto cifDiff = make_shared(myNbCarriers); auto cifNull = make_shared(myNbCarriers); auto cifSig = make_shared( (1 + myNbSymbols) * myNbCarriers * sizeof(complexf)); // TODO this needs a review bool useCicEq = false; unsigned cic_ratio = 1; if (myClockRate) { cic_ratio = myClockRate / myOutputRate; cic_ratio /= 4; // FPGA DUC if (myClockRate == 400000000) { // USRP2 if (cic_ratio & 1) { // odd useCicEq = true; } // even, no filter } else { useCicEq = true; } } auto cifCicEq = make_shared( myNbCarriers, (float)mySpacing * (float)myOutputRate / 2048000.0f, cic_ratio); shared_ptr tii; try { tii = make_shared(myDabMode, myTiiConfig); rcs.enrol(tii.get()); } catch (TIIError& e) { etiLog.level(error) << "Could not initialise TII: " << e.what(); } auto cifOfdm = make_shared( (1 + myNbSymbols), myNbCarriers, mySpacing); auto cifGain = make_shared( mySpacing, myGainMode, myDigGain, myNormalise); rcs.enrol(cifGain.get()); auto cifGuard = make_shared( myNbSymbols, mySpacing, myNullSize, mySymSize); shared_ptr cifFilter; if (myFilterTapsFilename != "") { cifFilter = make_shared(myFilterTapsFilename); rcs.enrol(cifFilter.get()); } auto myOutput = make_shared(dataOut); shared_ptr cifRes; if (myOutputRate != 2048000) { cifRes = make_shared(2048000, myOutputRate, mySpacing); } else { fprintf(stderr, "No resampler\n"); } myFlowgraph->connect(cifPrbs, cifMux); //////////////////////////////////////////////////////////////// // Processing FIC //////////////////////////////////////////////////////////////// shared_ptr fic(myEtiReader.getFic()); //////////////////////////////////////////////////////////////// // Data initialisation //////////////////////////////////////////////////////////////// myFicSizeIn = fic->getFramesize(); //////////////////////////////////////////////////////////////// // Modules configuration //////////////////////////////////////////////////////////////// // Configuring FIC channel PDEBUG("FIC:\n"); PDEBUG(" Framesize: %zu\n", fic->getFramesize()); // Configuring prbs generator auto ficPrbs = make_shared(myFicSizeIn, 0x110); // Configuring convolutionnal encoder auto ficConv = make_shared(myFicSizeIn); // Configuring puncturing encoder auto ficPunc = make_shared(); for (const auto *rule : fic->get_rules()) { PDEBUG(" Adding rule:\n"); PDEBUG(" Length: %zu\n", rule->length()); PDEBUG(" Pattern: 0x%x\n", rule->pattern()); ficPunc->append_rule(*rule); } PDEBUG(" Adding tail\n"); ficPunc->append_tail_rule(PuncturingRule(3, 0xcccccc)); myFlowgraph->connect(fic, ficPrbs); myFlowgraph->connect(ficPrbs, ficConv); myFlowgraph->connect(ficConv, ficPunc); myFlowgraph->connect(ficPunc, cifPart); //////////////////////////////////////////////////////////////// // Configuring subchannels //////////////////////////////////////////////////////////////// std::vector > subchannels = myEtiReader.getSubchannels(); for (const auto& subchannel : subchannels) { //////////////////////////////////////////////////////////// // Data initialisation //////////////////////////////////////////////////////////// size_t subchSizeIn = subchannel->framesize(); size_t subchSizeOut = subchannel->framesizeCu() * 8; //////////////////////////////////////////////////////////// // Modules configuration //////////////////////////////////////////////////////////// // Configuring subchannel PDEBUG("Subchannel:\n"); PDEBUG(" Start address: %zu\n", subchannel->startAddress()); PDEBUG(" Framesize: %zu\n", subchannel->framesize()); PDEBUG(" Bitrate: %zu\n", subchannel->bitrate()); PDEBUG(" Framesize CU: %zu\n", subchannel->framesizeCu()); PDEBUG(" Protection: %zu\n", subchannel->protection()); PDEBUG(" Form: %zu\n", subchannel->protectionForm()); PDEBUG(" Level: %zu\n", subchannel->protectionLevel()); PDEBUG(" Option: %zu\n", subchannel->protectionOption()); // Configuring prbs genrerator auto subchPrbs = make_shared(subchSizeIn, 0x110); // Configuring convolutionnal encoder auto subchConv = make_shared(subchSizeIn); // Configuring puncturing encoder auto subchPunc = make_shared(); for (const auto& rule : subchannel->get_rules()) { PDEBUG(" Adding rule:\n"); PDEBUG(" Length: %zu\n", rule->length()); PDEBUG(" Pattern: 0x%x\n", rule->pattern()); subchPunc->append_rule(*rule); } PDEBUG(" Adding tail\n"); subchPunc->append_tail_rule(PuncturingRule(3, 0xcccccc)); // Configuring time interleaver auto subchInterleaver = make_shared(subchSizeOut); myFlowgraph->connect(subchannel, subchPrbs); myFlowgraph->connect(subchPrbs, subchConv); myFlowgraph->connect(subchConv, subchPunc); myFlowgraph->connect(subchPunc, subchInterleaver); myFlowgraph->connect(subchInterleaver, cifMux); } myFlowgraph->connect(cifMux, cifPart); myFlowgraph->connect(cifPart, cifMap); myFlowgraph->connect(cifMap, cifFreq); myFlowgraph->connect(cifRef, cifDiff); myFlowgraph->connect(cifFreq, cifDiff); myFlowgraph->connect(cifNull, cifSig); myFlowgraph->connect(cifDiff, cifSig); if (tii) { myFlowgraph->connect(tii, cifSig); } if (useCicEq) { myFlowgraph->connect(cifSig, cifCicEq); myFlowgraph->connect(cifCicEq, cifOfdm); } else { myFlowgraph->connect(cifSig, cifOfdm); } myFlowgraph->connect(cifOfdm, cifGain); myFlowgraph->connect(cifGain, cifGuard); if (cifFilter) { myFlowgraph->connect(cifGuard, cifFilter); if (cifRes) { myFlowgraph->connect(cifFilter, cifRes); myFlowgraph->connect(cifRes, myOutput); } else { myFlowgraph->connect(cifFilter, myOutput); } } else { //no filtering if (cifRes) { myFlowgraph->connect(cifGuard, cifRes); myFlowgraph->connect(cifRes, myOutput); } else { myFlowgraph->connect(cifGuard, myOutput); } } } //////////////////////////////////////////////////////////////////// // Proccessing data //////////////////////////////////////////////////////////////////// return myFlowgraph->run(); }