/*
Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012
Her Majesty the Queen in Right of Canada (Communications Research
Center Canada)
Copyright (C) 2017
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
*/
/*
This file is part of ODR-DabMod.
ODR-DabMod is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DabMod is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DabMod. If not, see .
*/
#include
#include
#include "DabModulator.h"
#include "PcDebug.h"
#include "FrameMultiplexer.h"
#include "PrbsGenerator.h"
#include "BlockPartitioner.h"
#include "QpskSymbolMapper.h"
#include "FrequencyInterleaver.h"
#include "PhaseReference.h"
#include "DifferentialModulator.h"
#include "NullSymbol.h"
#include "SignalMultiplexer.h"
#include "CicEqualizer.h"
#include "OfdmGenerator.h"
#include "GainControl.h"
#include "GuardIntervalInserter.h"
#include "Resampler.h"
#include "ConvEncoder.h"
#include "FIRFilter.h"
#include "MemlessPoly.h"
#include "TII.h"
#include "PuncturingEncoder.h"
#include "TimeInterleaver.h"
#include "TimestampDecoder.h"
#include "RemoteControl.h"
#include "Log.h"
DabModulator::DabModulator(
EtiSource& etiSource,
tii_config_t& tiiConfig,
unsigned outputRate, unsigned clockRate,
unsigned dabMode, GainMode gainMode,
float& digGain, float normalise,
float gainmodeVariance,
const std::string& filterTapsFilename,
const std::string& polyCoefFilename
) :
ModInput(),
myOutputRate(outputRate),
myClockRate(clockRate),
myDabMode(dabMode),
myGainMode(gainMode),
myDigGain(digGain),
myNormalise(normalise),
myGainmodeVariance(gainmodeVariance),
myEtiSource(etiSource),
myFlowgraph(),
myFilterTapsFilename(filterTapsFilename),
myPolyCoefFilename(polyCoefFilename),
myTiiConfig(tiiConfig)
{
PDEBUG("DabModulator::DabModulator(%u, %u, %u, %zu) @ %p\n",
outputRate, clockRate, dabMode, (size_t)gainMode, this);
if (myDabMode == 0) {
setMode(2);
} else {
setMode(myDabMode);
}
}
void DabModulator::setMode(unsigned mode)
{
switch (mode) {
case 1:
myNbSymbols = 76;
myNbCarriers = 1536;
mySpacing = 2048;
myNullSize = 2656;
mySymSize = 2552;
myFicSizeOut = 288;
break;
case 2:
myNbSymbols = 76;
myNbCarriers = 384;
mySpacing = 512;
myNullSize = 664;
mySymSize = 638;
myFicSizeOut = 288;
break;
case 3:
myNbSymbols = 153;
myNbCarriers = 192;
mySpacing = 256;
myNullSize = 345;
mySymSize = 319;
myFicSizeOut = 384;
break;
case 4:
myNbSymbols = 76;
myNbCarriers = 768;
mySpacing = 1024;
myNullSize = 1328;
mySymSize = 1276;
myFicSizeOut = 288;
break;
default:
throw std::runtime_error("DabModulator::setMode invalid mode size");
}
}
int DabModulator::process(Buffer* dataOut)
{
using namespace std;
PDEBUG("DabModulator::process(dataOut: %p)\n", dataOut);
if (not myFlowgraph) {
unsigned mode = myEtiSource.getMode();
if (myDabMode != 0) {
mode = myDabMode;
} else if (mode == 0) {
mode = 4;
}
setMode(mode);
myFlowgraph = make_shared();
////////////////////////////////////////////////////////////////
// CIF data initialisation
////////////////////////////////////////////////////////////////
auto cifPrbs = make_shared(864 * 8, 0x110);
auto cifMux = make_shared(myEtiSource);
auto cifPart = make_shared(mode, myEtiSource.getFp());
auto cifMap = make_shared(myNbCarriers);
auto cifRef = make_shared(mode);
auto cifFreq = make_shared(mode);
auto cifDiff = make_shared(myNbCarriers);
auto cifNull = make_shared(myNbCarriers);
auto cifSig = make_shared(
(1 + myNbSymbols) * myNbCarriers * sizeof(complexf));
// TODO this needs a review
bool useCicEq = false;
unsigned cic_ratio = 1;
if (myClockRate) {
cic_ratio = myClockRate / myOutputRate;
cic_ratio /= 4; // FPGA DUC
if (myClockRate == 400000000) { // USRP2
if (cic_ratio & 1) { // odd
useCicEq = true;
} // even, no filter
}
else {
useCicEq = true;
}
}
auto cifCicEq = make_shared(
myNbCarriers,
(float)mySpacing * (float)myOutputRate / 2048000.0f, cic_ratio);
shared_ptr tii;
shared_ptr tiiRef;
try {
tii = make_shared(myDabMode, myTiiConfig, myEtiSource.getFp());
rcs.enrol(tii.get());
tiiRef = make_shared(mode);
}
catch (TIIError& e) {
etiLog.level(error) << "Could not initialise TII: " << e.what();
}
auto cifOfdm = make_shared(
(1 + myNbSymbols), myNbCarriers, mySpacing);
auto cifGain = make_shared(
mySpacing, myGainMode, myDigGain, myNormalise,
myGainmodeVariance);
rcs.enrol(cifGain.get());
auto cifGuard = make_shared(
myNbSymbols, mySpacing, myNullSize, mySymSize);
shared_ptr cifFilter;
if (not myFilterTapsFilename.empty()) {
cifFilter = make_shared(myFilterTapsFilename);
rcs.enrol(cifFilter.get());
}
shared_ptr cifPoly;
if (not myPolyCoefFilename.empty()) {
cifPoly = make_shared(myPolyCoefFilename);
etiLog.level(debug) << myPolyCoefFilename << "\n";
etiLog.level(debug) << cifPoly->m_coefs[0] << " " <<
cifPoly->m_coefs[1] << " "<< cifPoly->m_coefs[2] << " "<<
cifPoly->m_coefs[3] << " "<< cifPoly->m_coefs[4] << " "<<
cifPoly->m_coefs[5] << " "<< cifPoly->m_coefs[6] << " "<<
cifPoly->m_coefs[7] << "\n";
rcs.enrol(cifPoly.get());
}
auto myOutput = make_shared(dataOut);
shared_ptr cifRes;
if (myOutputRate != 2048000) {
cifRes = make_shared(2048000, myOutputRate, mySpacing);
} else {
fprintf(stderr, "No resampler\n");
}
myFlowgraph->connect(cifPrbs, cifMux);
////////////////////////////////////////////////////////////////
// Processing FIC
////////////////////////////////////////////////////////////////
shared_ptr fic(myEtiSource.getFic());
////////////////////////////////////////////////////////////////
// Data initialisation
////////////////////////////////////////////////////////////////
myFicSizeIn = fic->getFramesize();
////////////////////////////////////////////////////////////////
// Modules configuration
////////////////////////////////////////////////////////////////
// Configuring FIC channel
PDEBUG("FIC:\n");
PDEBUG(" Framesize: %zu\n", fic->getFramesize());
// Configuring prbs generator
auto ficPrbs = make_shared(myFicSizeIn, 0x110);
// Configuring convolutionnal encoder
auto ficConv = make_shared(myFicSizeIn);
// Configuring puncturing encoder
auto ficPunc = make_shared();
for (const auto &rule : fic->get_rules()) {
PDEBUG(" Adding rule:\n");
PDEBUG(" Length: %zu\n", rule.length());
PDEBUG(" Pattern: 0x%x\n", rule.pattern());
ficPunc->append_rule(rule);
}
PDEBUG(" Adding tail\n");
ficPunc->append_tail_rule(PuncturingRule(3, 0xcccccc));
myFlowgraph->connect(fic, ficPrbs);
myFlowgraph->connect(ficPrbs, ficConv);
myFlowgraph->connect(ficConv, ficPunc);
myFlowgraph->connect(ficPunc, cifPart);
////////////////////////////////////////////////////////////////
// Configuring subchannels
////////////////////////////////////////////////////////////////
for (const auto& subchannel : myEtiSource.getSubchannels()) {
////////////////////////////////////////////////////////////
// Data initialisation
////////////////////////////////////////////////////////////
size_t subchSizeIn = subchannel->framesize();
size_t subchSizeOut = subchannel->framesizeCu() * 8;
////////////////////////////////////////////////////////////
// Modules configuration
////////////////////////////////////////////////////////////
// Configuring subchannel
PDEBUG("Subchannel:\n");
PDEBUG(" Start address: %zu\n",
subchannel->startAddress());
PDEBUG(" Framesize: %zu\n",
subchannel->framesize());
PDEBUG(" Bitrate: %zu\n", subchannel->bitrate());
PDEBUG(" Framesize CU: %zu\n",
subchannel->framesizeCu());
PDEBUG(" Protection: %zu\n",
subchannel->protection());
PDEBUG(" Form: %zu\n",
subchannel->protectionForm());
PDEBUG(" Level: %zu\n",
subchannel->protectionLevel());
PDEBUG(" Option: %zu\n",
subchannel->protectionOption());
// Configuring prbs genrerator
auto subchPrbs = make_shared(subchSizeIn, 0x110);
// Configuring convolutionnal encoder
auto subchConv = make_shared(subchSizeIn);
// Configuring puncturing encoder
auto subchPunc =
make_shared(subchannel->framesizeCu());
for (const auto& rule : subchannel->get_rules()) {
PDEBUG(" Adding rule:\n");
PDEBUG(" Length: %zu\n", rule.length());
PDEBUG(" Pattern: 0x%x\n", rule.pattern());
subchPunc->append_rule(rule);
}
PDEBUG(" Adding tail\n");
subchPunc->append_tail_rule(PuncturingRule(3, 0xcccccc));
// Configuring time interleaver
auto subchInterleaver = make_shared(subchSizeOut);
myFlowgraph->connect(subchannel, subchPrbs);
myFlowgraph->connect(subchPrbs, subchConv);
myFlowgraph->connect(subchConv, subchPunc);
myFlowgraph->connect(subchPunc, subchInterleaver);
myFlowgraph->connect(subchInterleaver, cifMux);
}
myFlowgraph->connect(cifMux, cifPart);
myFlowgraph->connect(cifPart, cifMap);
myFlowgraph->connect(cifMap, cifFreq);
myFlowgraph->connect(cifRef, cifDiff);
myFlowgraph->connect(cifFreq, cifDiff);
myFlowgraph->connect(cifNull, cifSig);
myFlowgraph->connect(cifDiff, cifSig);
if (tii) {
myFlowgraph->connect(tiiRef, tii);
myFlowgraph->connect(tii, cifSig);
}
if (useCicEq) {
myFlowgraph->connect(cifSig, cifCicEq);
myFlowgraph->connect(cifCicEq, cifOfdm);
}
else {
myFlowgraph->connect(cifSig, cifOfdm);
}
myFlowgraph->connect(cifOfdm, cifGain);
myFlowgraph->connect(cifGain, cifGuard);
auto cifOut = cifPoly ?
static_pointer_cast(cifPoly) :
static_pointer_cast(myOutput);
if (cifFilter) {
myFlowgraph->connect(cifGuard, cifFilter);
if (cifRes) {
myFlowgraph->connect(cifFilter, cifRes);
myFlowgraph->connect(cifRes, cifOut);
}
else {
myFlowgraph->connect(cifFilter, cifOut);
}
}
else {
if (cifRes) {
myFlowgraph->connect(cifGuard, cifRes);
myFlowgraph->connect(cifRes, cifOut);
}
else {
myFlowgraph->connect(cifGuard, cifOut);
}
}
if (cifPoly) {
myFlowgraph->connect(cifPoly, myOutput);
}
}
////////////////////////////////////////////////////////////////////
// Processing data
////////////////////////////////////////////////////////////////////
return myFlowgraph->run();
}