/* Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012 Her Majesty the Queen in Right of Canada (Communications Research Center Canada) */ /* This file is part of CRC-DADMOD. CRC-DADMOD is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. CRC-DADMOD is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with CRC-DADMOD. If not, see . */ #include "DabModulator.h" #include "PcDebug.h" #include "FrameMultiplexer.h" #include "PrbsGenerator.h" #include "BlockPartitioner.h" #include "QpskSymbolMapper.h" #include "FrequencyInterleaver.h" #include "PhaseReference.h" #include "DifferentialModulator.h" #include "NullSymbol.h" #include "SignalMultiplexer.h" #include "CicEqualizer.h" #include "OfdmGenerator.h" #include "GainControl.h" #include "GuardIntervalInserter.h" #include "Resampler.h" #include "ConvEncoder.h" #include "PuncturingEncoder.h" #include "TimeInterleaver.h" DabModulator::DabModulator(unsigned outputRate, unsigned clockRate, unsigned dabMode, GainMode gainMode, float factor) : ModCodec(ModFormat(1), ModFormat(0)), myOutputRate(outputRate), myClockRate(clockRate), myDabMode(dabMode), myGainMode(gainMode), myFactor(factor), myFlowgraph(NULL) { PDEBUG("DabModulator::DabModulator(%u, %u, %u, %u) @ %p\n", outputRate, clockRate, dabMode, gainMode, this); if (myDabMode == 0) { setMode(2); } else { setMode(myDabMode); } } DabModulator::~DabModulator() { PDEBUG("DabModulator::~DabModulator() @ %p\n", this); delete myFlowgraph; } void DabModulator::setMode(unsigned mode) { switch (mode) { case 1: myNbSymbols = 76; myNbCarriers = 1536; mySpacing = 2048; myNullSize = 2656; mySymSize = 2552; myFicSizeOut = 288; break; case 2: myNbSymbols = 76; myNbCarriers = 384; mySpacing = 512; myNullSize = 664; mySymSize = 638; myFicSizeOut = 288; break; case 3: myNbSymbols = 153; myNbCarriers = 192; mySpacing = 256; myNullSize = 345; mySymSize = 319; myFicSizeOut = 384; break; case 4: myNbSymbols = 76; myNbCarriers = 768; mySpacing = 1024; myNullSize = 1328; mySymSize = 1276; myFicSizeOut = 288; break; default: throw std::runtime_error("DabModulator::setMode invalid mode size"); } myOutputFormat.size((size_t)((myNullSize + (myNbSymbols * mySymSize)) * sizeof(complexf) / 2048000.0 * myOutputRate)); } int DabModulator::process(Buffer* const dataIn, Buffer* dataOut) { PDEBUG("DabModulator::process(dataIn: %p, dataOut: %p)\n", dataIn, dataOut); myEtiReader.process(dataIn); if (myFlowgraph == NULL) { unsigned mode = myEtiReader.getMode(); if (myDabMode != 0) { mode = myDabMode; } else if (mode == 0) { mode = 4; } setMode(mode); myFlowgraph = new Flowgraph(); //////////////////////////////////////////////////////////////// // CIF data initialisation //////////////////////////////////////////////////////////////// FrameMultiplexer* cifMux = NULL; PrbsGenerator* cifPrbs = NULL; BlockPartitioner* cifPart = NULL; QpskSymbolMapper* cifMap = NULL; FrequencyInterleaver* cifFreq = NULL; PhaseReference* cifRef = NULL; DifferentialModulator* cifDiff = NULL; NullSymbol* cifNull = NULL; SignalMultiplexer* cifSig = NULL; CicEqualizer* cifCicEq = NULL; OfdmGenerator* cifOfdm = NULL; GainControl* cifGain = NULL; GuardIntervalInserter* cifGuard = NULL; Resampler* cifRes = NULL; cifPrbs = new PrbsGenerator(864 * 8, 0x110); cifMux = new FrameMultiplexer(myFicSizeOut + 864 * 8, &myEtiReader.getSubchannels()); cifPart = new BlockPartitioner(mode, myEtiReader.getFct()); cifMap = new QpskSymbolMapper(myNbCarriers); cifRef = new PhaseReference(mode); cifFreq = new FrequencyInterleaver(mode); cifDiff = new DifferentialModulator(myNbCarriers); cifNull = new NullSymbol(myNbCarriers); cifSig = new SignalMultiplexer( (1 + myNbSymbols) * myNbCarriers * sizeof(complexf)); if (myClockRate) { cifCicEq = new CicEqualizer(myNbCarriers, (float)mySpacing * (float)myOutputRate / 2048000.0f, myClockRate / myOutputRate); } cifOfdm = new OfdmGenerator((1 + myNbSymbols), myNbCarriers, mySpacing); cifGain = new GainControl(mySpacing, myGainMode, myFactor); cifGuard = new GuardIntervalInserter(myNbSymbols, mySpacing, myNullSize, mySymSize); myOutput = new OutputMemory(); if (myOutputRate != 2048000) { cifRes = new Resampler(2048000, myOutputRate, mySpacing); } else { fprintf(stderr, "No resampler\n"); } myFlowgraph->connect(cifPrbs, cifMux); //////////////////////////////////////////////////////////////// // Processing FIC //////////////////////////////////////////////////////////////// FicSource* fic = myEtiReader.getFic(); PrbsGenerator* ficPrbs = NULL; ConvEncoder* ficConv = NULL; PuncturingEncoder* ficPunc = NULL; //////////////////////////////////////////////////////////////// // Data initialisation //////////////////////////////////////////////////////////////// myFicSizeIn = fic->getFramesize(); //////////////////////////////////////////////////////////////// // Modules configuration //////////////////////////////////////////////////////////////// // Configuring FIC channel PDEBUG("FIC:\n"); PDEBUG(" Framesize: %zu\n", fic->getFramesize()); // Configuring prbs generator ficPrbs = new PrbsGenerator(myFicSizeIn, 0x110); // Configuring convolutionnal encoder ficConv = new ConvEncoder(myFicSizeIn); // Configuring puncturing encoder ficPunc = new PuncturingEncoder(); std::vector rules = fic->get_rules(); std::vector::const_iterator rule; for (rule = rules.begin(); rule != rules.end(); ++rule) { PDEBUG(" Adding rule:\n"); PDEBUG(" Length: %zu\n", (*rule)->length()); PDEBUG(" Pattern: 0x%x\n", (*rule)->pattern()); ficPunc->append_rule(*(*rule)); } PDEBUG(" Adding tail\n"); ficPunc->append_tail_rule(PuncturingRule(3, 0xcccccc)); myFlowgraph->connect(fic, ficPrbs); myFlowgraph->connect(ficPrbs, ficConv); myFlowgraph->connect(ficConv, ficPunc); myFlowgraph->connect(ficPunc, cifPart); //////////////////////////////////////////////////////////////// // Configuring subchannels //////////////////////////////////////////////////////////////// std::vector subchannels = myEtiReader.getSubchannels(); std::vector::const_iterator subchannel; for (subchannel = subchannels.begin(); subchannel != subchannels.end(); ++subchannel) { PrbsGenerator* subchPrbs = NULL; ConvEncoder* subchConv = NULL; PuncturingEncoder* subchPunc = NULL; TimeInterleaver* subchInterleaver = NULL; //////////////////////////////////////////////////////////// // Data initialisation //////////////////////////////////////////////////////////// size_t subchSizeIn = (*subchannel)->framesize(); size_t subchSizeOut = (*subchannel)->framesizeCu() * 8; //////////////////////////////////////////////////////////// // Modules configuration //////////////////////////////////////////////////////////// // Configuring subchannel PDEBUG("Subchannel:\n"); PDEBUG(" Start address: %zu\n", (*subchannel)->startAddress()); PDEBUG(" Framesize: %zu\n", (*subchannel)->framesize()); PDEBUG(" Bitrate: %zu\n", (*subchannel)->bitrate()); PDEBUG(" Framesize CU: %zu\n", (*subchannel)->framesizeCu()); PDEBUG(" Protection: %zu\n", (*subchannel)->protection()); PDEBUG(" Form: %zu\n", (*subchannel)->protectionForm()); PDEBUG(" Level: %zu\n", (*subchannel)->protectionLevel()); PDEBUG(" Option: %zu\n", (*subchannel)->protectionOption()); // Configuring prbs genrerator subchPrbs = new PrbsGenerator(subchSizeIn, 0x110); // Configuring convolutionnal encoder subchConv = new ConvEncoder(subchSizeIn); // Configuring puncturing encoder subchPunc = new PuncturingEncoder(); std::vector rules = (*subchannel)->get_rules(); std::vector::const_iterator rule; for (rule = rules.begin(); rule != rules.end(); ++rule) { PDEBUG(" Adding rule:\n"); PDEBUG(" Length: %zu\n", (*rule)->length()); PDEBUG(" Pattern: 0x%x\n", (*rule)->pattern()); subchPunc->append_rule(*(*rule)); } PDEBUG(" Adding tail\n"); subchPunc->append_tail_rule(PuncturingRule(3, 0xcccccc)); // Configuring time interleaver subchInterleaver = new TimeInterleaver(subchSizeOut); myFlowgraph->connect(*subchannel, subchPrbs); myFlowgraph->connect(subchPrbs, subchConv); myFlowgraph->connect(subchConv, subchPunc); myFlowgraph->connect(subchPunc, subchInterleaver); myFlowgraph->connect(subchInterleaver, cifMux); } myFlowgraph->connect(cifMux, cifPart); myFlowgraph->connect(cifPart, cifMap); myFlowgraph->connect(cifMap, cifFreq); myFlowgraph->connect(cifRef, cifDiff); myFlowgraph->connect(cifFreq, cifDiff); myFlowgraph->connect(cifNull, cifSig); myFlowgraph->connect(cifDiff, cifSig); if (myClockRate) { myFlowgraph->connect(cifSig, cifCicEq); myFlowgraph->connect(cifCicEq, cifOfdm); } else { myFlowgraph->connect(cifSig, cifOfdm); } myFlowgraph->connect(cifOfdm, cifGain); myFlowgraph->connect(cifGain, cifGuard); if (cifRes != NULL) { myFlowgraph->connect(cifGuard, cifRes); myFlowgraph->connect(cifRes, myOutput); } else { myFlowgraph->connect(cifGuard, myOutput); } } //////////////////////////////////////////////////////////////////// // Proccessing data //////////////////////////////////////////////////////////////////// myOutput->setOutput(dataOut); return myFlowgraph->run(); }