/* Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012 Her Majesty the Queen in Right of Canada (Communications Research Center Canada) Includes modifications for which no copyright is claimed 2012, Matthias P. Braendli, matthias.braendli@mpb.li */ /* This file is part of ODR-DabMod. ODR-DabMod is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ODR-DabMod is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>. */ #include <string> #include "DabModulator.h" #include "PcDebug.h" #include "FrameMultiplexer.h" #include "PrbsGenerator.h" #include "BlockPartitioner.h" #include "QpskSymbolMapper.h" #include "FrequencyInterleaver.h" #include "PhaseReference.h" #include "DifferentialModulator.h" #include "NullSymbol.h" #include "SignalMultiplexer.h" #include "CicEqualizer.h" #include "OfdmGenerator.h" #include "GainControl.h" #include "GuardIntervalInserter.h" #include "Resampler.h" #include "ConvEncoder.h" #include "FIRFilter.h" #include "PuncturingEncoder.h" #include "TimeInterleaver.h" #include "TimestampDecoder.h" #include "RemoteControl.h" #include "Log.h" DabModulator::DabModulator( struct modulator_offset_config& modconf, BaseRemoteController* rc, Logger& logger, unsigned outputRate, unsigned clockRate, unsigned dabMode, GainMode gainMode, float factor, std::string filterTapsFilename ) : ModCodec(ModFormat(1), ModFormat(0)), myLogger(logger), myOutputRate(outputRate), myClockRate(clockRate), myDabMode(dabMode), myGainMode(gainMode), myFactor(factor), myEtiReader(EtiReader(modconf, myLogger)), myFlowgraph(NULL), myFilterTapsFilename(filterTapsFilename), myRC(rc) { PDEBUG("DabModulator::DabModulator(%u, %u, %u, %u) @ %p\n", outputRate, clockRate, dabMode, gainMode, this); if (myDabMode == 0) { setMode(2); } else { setMode(myDabMode); } } DabModulator::~DabModulator() { PDEBUG("DabModulator::~DabModulator() @ %p\n", this); delete myFlowgraph; } void DabModulator::setMode(unsigned mode) { switch (mode) { case 1: myNbSymbols = 76; myNbCarriers = 1536; mySpacing = 2048; myNullSize = 2656; mySymSize = 2552; myFicSizeOut = 288; break; case 2: myNbSymbols = 76; myNbCarriers = 384; mySpacing = 512; myNullSize = 664; mySymSize = 638; myFicSizeOut = 288; break; case 3: myNbSymbols = 153; myNbCarriers = 192; mySpacing = 256; myNullSize = 345; mySymSize = 319; myFicSizeOut = 384; break; case 4: myNbSymbols = 76; myNbCarriers = 768; mySpacing = 1024; myNullSize = 1328; mySymSize = 1276; myFicSizeOut = 288; break; default: throw std::runtime_error("DabModulator::setMode invalid mode size"); } myOutputFormat.size((size_t)((myNullSize + (myNbSymbols * mySymSize)) * sizeof(complexf) / 2048000.0 * myOutputRate)); } int DabModulator::process(Buffer* const dataIn, Buffer* dataOut) { PDEBUG("DabModulator::process(dataIn: %p, dataOut: %p)\n", dataIn, dataOut); myEtiReader.process(dataIn); if (myFlowgraph == NULL) { unsigned mode = myEtiReader.getMode(); if (myDabMode != 0) { mode = myDabMode; } else if (mode == 0) { mode = 4; } setMode(mode); myFlowgraph = new Flowgraph(); //////////////////////////////////////////////////////////////// // CIF data initialisation //////////////////////////////////////////////////////////////// FrameMultiplexer* cifMux = NULL; PrbsGenerator* cifPrbs = NULL; BlockPartitioner* cifPart = NULL; QpskSymbolMapper* cifMap = NULL; FrequencyInterleaver* cifFreq = NULL; PhaseReference* cifRef = NULL; DifferentialModulator* cifDiff = NULL; NullSymbol* cifNull = NULL; SignalMultiplexer* cifSig = NULL; CicEqualizer* cifCicEq = NULL; OfdmGenerator* cifOfdm = NULL; GainControl* cifGain = NULL; GuardIntervalInserter* cifGuard = NULL; FIRFilter* cifFilter = NULL; Resampler* cifRes = NULL; cifPrbs = new PrbsGenerator(864 * 8, 0x110); cifMux = new FrameMultiplexer(myFicSizeOut + 864 * 8, &myEtiReader.getSubchannels()); cifPart = new BlockPartitioner(mode, myEtiReader.getFp()); cifMap = new QpskSymbolMapper(myNbCarriers); cifRef = new PhaseReference(mode); cifFreq = new FrequencyInterleaver(mode); cifDiff = new DifferentialModulator(myNbCarriers); cifNull = new NullSymbol(myNbCarriers); cifSig = new SignalMultiplexer( (1 + myNbSymbols) * myNbCarriers * sizeof(complexf)); if (myClockRate) { unsigned ratio = myClockRate / myOutputRate; ratio /= 4; // FPGA DUC if (myClockRate == 400000000) { // USRP2 if (ratio & 1) { // odd cifCicEq = new CicEqualizer(myNbCarriers, (float)mySpacing * (float)myOutputRate / 2048000.0f, ratio); } // even, no filter } else { cifCicEq = new CicEqualizer(myNbCarriers, (float)mySpacing * (float)myOutputRate / 2048000.0f, ratio); } } cifOfdm = new OfdmGenerator((1 + myNbSymbols), myNbCarriers, mySpacing); cifGain = new GainControl(mySpacing, myGainMode, myFactor); cifGuard = new GuardIntervalInserter(myNbSymbols, mySpacing, myNullSize, mySymSize); if (myFilterTapsFilename != "") { cifFilter = new FIRFilter(myFilterTapsFilename); cifFilter->enrol_at(*myRC); } myOutput = new OutputMemory(); if (myOutputRate != 2048000) { cifRes = new Resampler(2048000, myOutputRate, mySpacing); } else { fprintf(stderr, "No resampler\n"); } myFlowgraph->connect(cifPrbs, cifMux); //////////////////////////////////////////////////////////////// // Processing FIC //////////////////////////////////////////////////////////////// FicSource* fic = myEtiReader.getFic(); PrbsGenerator* ficPrbs = NULL; ConvEncoder* ficConv = NULL; PuncturingEncoder* ficPunc = NULL; //////////////////////////////////////////////////////////////// // Data initialisation //////////////////////////////////////////////////////////////// myFicSizeIn = fic->getFramesize(); //////////////////////////////////////////////////////////////// // Modules configuration //////////////////////////////////////////////////////////////// // Configuring FIC channel PDEBUG("FIC:\n"); PDEBUG(" Framesize: %zu\n", fic->getFramesize()); // Configuring prbs generator ficPrbs = new PrbsGenerator(myFicSizeIn, 0x110); // Configuring convolutionnal encoder ficConv = new ConvEncoder(myFicSizeIn); // Configuring puncturing encoder ficPunc = new PuncturingEncoder(); std::vector<PuncturingRule*> rules = fic->get_rules(); std::vector<PuncturingRule*>::const_iterator rule; for (rule = rules.begin(); rule != rules.end(); ++rule) { PDEBUG(" Adding rule:\n"); PDEBUG(" Length: %zu\n", (*rule)->length()); PDEBUG(" Pattern: 0x%x\n", (*rule)->pattern()); ficPunc->append_rule(*(*rule)); } PDEBUG(" Adding tail\n"); ficPunc->append_tail_rule(PuncturingRule(3, 0xcccccc)); myFlowgraph->connect(fic, ficPrbs); myFlowgraph->connect(ficPrbs, ficConv); myFlowgraph->connect(ficConv, ficPunc); myFlowgraph->connect(ficPunc, cifPart); //////////////////////////////////////////////////////////////// // Configuring subchannels //////////////////////////////////////////////////////////////// std::vector<SubchannelSource*> subchannels = myEtiReader.getSubchannels(); std::vector<SubchannelSource*>::const_iterator subchannel; for (subchannel = subchannels.begin(); subchannel != subchannels.end(); ++subchannel) { PrbsGenerator* subchPrbs = NULL; ConvEncoder* subchConv = NULL; PuncturingEncoder* subchPunc = NULL; TimeInterleaver* subchInterleaver = NULL; //////////////////////////////////////////////////////////// // Data initialisation //////////////////////////////////////////////////////////// size_t subchSizeIn = (*subchannel)->framesize(); size_t subchSizeOut = (*subchannel)->framesizeCu() * 8; //////////////////////////////////////////////////////////// // Modules configuration //////////////////////////////////////////////////////////// // Configuring subchannel PDEBUG("Subchannel:\n"); PDEBUG(" Start address: %zu\n", (*subchannel)->startAddress()); PDEBUG(" Framesize: %zu\n", (*subchannel)->framesize()); PDEBUG(" Bitrate: %zu\n", (*subchannel)->bitrate()); PDEBUG(" Framesize CU: %zu\n", (*subchannel)->framesizeCu()); PDEBUG(" Protection: %zu\n", (*subchannel)->protection()); PDEBUG(" Form: %zu\n", (*subchannel)->protectionForm()); PDEBUG(" Level: %zu\n", (*subchannel)->protectionLevel()); PDEBUG(" Option: %zu\n", (*subchannel)->protectionOption()); // Configuring prbs genrerator subchPrbs = new PrbsGenerator(subchSizeIn, 0x110); // Configuring convolutionnal encoder subchConv = new ConvEncoder(subchSizeIn); // Configuring puncturing encoder subchPunc = new PuncturingEncoder(); std::vector<PuncturingRule*> rules = (*subchannel)->get_rules(); std::vector<PuncturingRule*>::const_iterator rule; for (rule = rules.begin(); rule != rules.end(); ++rule) { PDEBUG(" Adding rule:\n"); PDEBUG(" Length: %zu\n", (*rule)->length()); PDEBUG(" Pattern: 0x%x\n", (*rule)->pattern()); subchPunc->append_rule(*(*rule)); } PDEBUG(" Adding tail\n"); subchPunc->append_tail_rule(PuncturingRule(3, 0xcccccc)); // Configuring time interleaver subchInterleaver = new TimeInterleaver(subchSizeOut); myFlowgraph->connect(*subchannel, subchPrbs); myFlowgraph->connect(subchPrbs, subchConv); myFlowgraph->connect(subchConv, subchPunc); myFlowgraph->connect(subchPunc, subchInterleaver); myFlowgraph->connect(subchInterleaver, cifMux); } myFlowgraph->connect(cifMux, cifPart); myFlowgraph->connect(cifPart, cifMap); myFlowgraph->connect(cifMap, cifFreq); myFlowgraph->connect(cifRef, cifDiff); myFlowgraph->connect(cifFreq, cifDiff); myFlowgraph->connect(cifNull, cifSig); myFlowgraph->connect(cifDiff, cifSig); if (myClockRate) { myFlowgraph->connect(cifSig, cifCicEq); myFlowgraph->connect(cifCicEq, cifOfdm); } else { myFlowgraph->connect(cifSig, cifOfdm); } myFlowgraph->connect(cifOfdm, cifGain); myFlowgraph->connect(cifGain, cifGuard); if (myFilterTapsFilename != "") { myFlowgraph->connect(cifGuard, cifFilter); if (cifRes != NULL) { myFlowgraph->connect(cifFilter, cifRes); myFlowgraph->connect(cifRes, myOutput); } else { myFlowgraph->connect(cifFilter, myOutput); } } else { //no filtering if (cifRes != NULL) { myFlowgraph->connect(cifGuard, cifRes); myFlowgraph->connect(cifRes, myOutput); } else { myFlowgraph->connect(cifGuard, myOutput); } } } //////////////////////////////////////////////////////////////////// // Proccessing data //////////////////////////////////////////////////////////////////// myOutput->setOutput(dataOut); return myFlowgraph->run(); }