/*
Copyright (C) 2007, 2008, 2009, 2010, 2011, 2012
Her Majesty the Queen in Right of Canada (Communications Research
Center Canada)
Includes modifications for which no copyright is claimed
2012, Matthias P. Braendli, matthias.braendli@mpb.li
*/
/*
This file is part of CRC-DADMOD.
CRC-DADMOD is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
CRC-DADMOD is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with CRC-DADMOD. If not, see .
*/
#include "DabModulator.h"
#include "PcDebug.h"
#include "FrameMultiplexer.h"
#include "PrbsGenerator.h"
#include "BlockPartitioner.h"
#include "QpskSymbolMapper.h"
#include "FrequencyInterleaver.h"
#include "PhaseReference.h"
#include "DifferentialModulator.h"
#include "NullSymbol.h"
#include "SignalMultiplexer.h"
#include "CicEqualizer.h"
#include "OfdmGenerator.h"
#include "GainControl.h"
#include "GuardIntervalInserter.h"
#include "Resampler.h"
#include "ConvEncoder.h"
#include "FIRFilter.h"
#include "PuncturingEncoder.h"
#include "TimeInterleaver.h"
#include "TimestampDecoder.h"
DabModulator::DabModulator(
struct modulator_offset_config& modconf,
unsigned outputRate, unsigned clockRate,
unsigned dabMode, GainMode gainMode, float factor,
char* filterTapsFilename
) :
ModCodec(ModFormat(1), ModFormat(0)),
myOutputRate(outputRate),
myClockRate(clockRate),
myDabMode(dabMode),
myGainMode(gainMode),
myFactor(factor),
myEtiReader(EtiReader(modconf)),
myFlowgraph(NULL),
myFilterTapsFilename(filterTapsFilename)
{
PDEBUG("DabModulator::DabModulator(%u, %u, %u, %u) @ %p\n",
outputRate, clockRate, dabMode, gainMode, this);
if (myDabMode == 0) {
setMode(2);
} else {
setMode(myDabMode);
}
}
DabModulator::~DabModulator()
{
PDEBUG("DabModulator::~DabModulator() @ %p\n", this);
delete myFlowgraph;
}
void DabModulator::setMode(unsigned mode)
{
switch (mode) {
case 1:
myNbSymbols = 76;
myNbCarriers = 1536;
mySpacing = 2048;
myNullSize = 2656;
mySymSize = 2552;
myFicSizeOut = 288;
break;
case 2:
myNbSymbols = 76;
myNbCarriers = 384;
mySpacing = 512;
myNullSize = 664;
mySymSize = 638;
myFicSizeOut = 288;
break;
case 3:
myNbSymbols = 153;
myNbCarriers = 192;
mySpacing = 256;
myNullSize = 345;
mySymSize = 319;
myFicSizeOut = 384;
break;
case 4:
myNbSymbols = 76;
myNbCarriers = 768;
mySpacing = 1024;
myNullSize = 1328;
mySymSize = 1276;
myFicSizeOut = 288;
break;
default:
throw std::runtime_error("DabModulator::setMode invalid mode size");
}
myOutputFormat.size((size_t)((myNullSize + (myNbSymbols * mySymSize))
* sizeof(complexf) / 2048000.0 * myOutputRate));
}
int DabModulator::process(Buffer* const dataIn, Buffer* dataOut)
{
PDEBUG("DabModulator::process(dataIn: %p, dataOut: %p)\n",
dataIn, dataOut);
myEtiReader.process(dataIn);
if (myFlowgraph == NULL) {
unsigned mode = myEtiReader.getMode();
if (myDabMode != 0) {
mode = myDabMode;
} else if (mode == 0) {
mode = 4;
}
setMode(mode);
myFlowgraph = new Flowgraph();
////////////////////////////////////////////////////////////////
// CIF data initialisation
////////////////////////////////////////////////////////////////
FrameMultiplexer* cifMux = NULL;
PrbsGenerator* cifPrbs = NULL;
BlockPartitioner* cifPart = NULL;
QpskSymbolMapper* cifMap = NULL;
FrequencyInterleaver* cifFreq = NULL;
PhaseReference* cifRef = NULL;
DifferentialModulator* cifDiff = NULL;
NullSymbol* cifNull = NULL;
SignalMultiplexer* cifSig = NULL;
CicEqualizer* cifCicEq = NULL;
OfdmGenerator* cifOfdm = NULL;
GainControl* cifGain = NULL;
GuardIntervalInserter* cifGuard = NULL;
FIRFilter* cifFilter = NULL;
Resampler* cifRes = NULL;
cifPrbs = new PrbsGenerator(864 * 8, 0x110);
cifMux = new FrameMultiplexer(myFicSizeOut + 864 * 8,
&myEtiReader.getSubchannels());
cifPart = new BlockPartitioner(mode, myEtiReader.getFp());
cifMap = new QpskSymbolMapper(myNbCarriers);
cifRef = new PhaseReference(mode);
cifFreq = new FrequencyInterleaver(mode);
cifDiff = new DifferentialModulator(myNbCarriers);
cifNull = new NullSymbol(myNbCarriers);
cifSig = new SignalMultiplexer(
(1 + myNbSymbols) * myNbCarriers * sizeof(complexf));
if (myClockRate) {
unsigned ratio = myClockRate / myOutputRate;
ratio /= 4; // FPGA DUC
if (myClockRate == 400000000) { // USRP2
if (ratio & 1) { // odd
cifCicEq = new CicEqualizer(myNbCarriers,
(float)mySpacing * (float)myOutputRate / 2048000.0f,
ratio);
} // even, no filter
} else {
cifCicEq = new CicEqualizer(myNbCarriers,
(float)mySpacing * (float)myOutputRate / 2048000.0f,
ratio);
}
}
cifOfdm = new OfdmGenerator((1 + myNbSymbols), myNbCarriers, mySpacing);
cifGain = new GainControl(mySpacing, myGainMode, myFactor);
cifGuard = new GuardIntervalInserter(myNbSymbols, mySpacing,
myNullSize, mySymSize);
if (myFilterTapsFilename != NULL) {
cifFilter = new FIRFilter(myFilterTapsFilename);
}
myOutput = new OutputMemory();
if (myOutputRate != 2048000) {
cifRes = new Resampler(2048000, myOutputRate, mySpacing);
} else {
fprintf(stderr, "No resampler\n");
}
myFlowgraph->connect(cifPrbs, cifMux);
////////////////////////////////////////////////////////////////
// Processing FIC
////////////////////////////////////////////////////////////////
FicSource* fic = myEtiReader.getFic();
PrbsGenerator* ficPrbs = NULL;
ConvEncoder* ficConv = NULL;
PuncturingEncoder* ficPunc = NULL;
////////////////////////////////////////////////////////////////
// Data initialisation
////////////////////////////////////////////////////////////////
myFicSizeIn = fic->getFramesize();
////////////////////////////////////////////////////////////////
// Modules configuration
////////////////////////////////////////////////////////////////
// Configuring FIC channel
PDEBUG("FIC:\n");
PDEBUG(" Framesize: %zu\n", fic->getFramesize());
// Configuring prbs generator
ficPrbs = new PrbsGenerator(myFicSizeIn, 0x110);
// Configuring convolutionnal encoder
ficConv = new ConvEncoder(myFicSizeIn);
// Configuring puncturing encoder
ficPunc = new PuncturingEncoder();
std::vector rules = fic->get_rules();
std::vector::const_iterator rule;
for (rule = rules.begin(); rule != rules.end(); ++rule) {
PDEBUG(" Adding rule:\n");
PDEBUG(" Length: %zu\n", (*rule)->length());
PDEBUG(" Pattern: 0x%x\n", (*rule)->pattern());
ficPunc->append_rule(*(*rule));
}
PDEBUG(" Adding tail\n");
ficPunc->append_tail_rule(PuncturingRule(3, 0xcccccc));
myFlowgraph->connect(fic, ficPrbs);
myFlowgraph->connect(ficPrbs, ficConv);
myFlowgraph->connect(ficConv, ficPunc);
myFlowgraph->connect(ficPunc, cifPart);
////////////////////////////////////////////////////////////////
// Configuring subchannels
////////////////////////////////////////////////////////////////
std::vector subchannels =
myEtiReader.getSubchannels();
std::vector::const_iterator subchannel;
for (subchannel = subchannels.begin();
subchannel != subchannels.end();
++subchannel) {
PrbsGenerator* subchPrbs = NULL;
ConvEncoder* subchConv = NULL;
PuncturingEncoder* subchPunc = NULL;
TimeInterleaver* subchInterleaver = NULL;
////////////////////////////////////////////////////////////
// Data initialisation
////////////////////////////////////////////////////////////
size_t subchSizeIn = (*subchannel)->framesize();
size_t subchSizeOut = (*subchannel)->framesizeCu() * 8;
////////////////////////////////////////////////////////////
// Modules configuration
////////////////////////////////////////////////////////////
// Configuring subchannel
PDEBUG("Subchannel:\n");
PDEBUG(" Start address: %zu\n",
(*subchannel)->startAddress());
PDEBUG(" Framesize: %zu\n",
(*subchannel)->framesize());
PDEBUG(" Bitrate: %zu\n", (*subchannel)->bitrate());
PDEBUG(" Framesize CU: %zu\n",
(*subchannel)->framesizeCu());
PDEBUG(" Protection: %zu\n",
(*subchannel)->protection());
PDEBUG(" Form: %zu\n",
(*subchannel)->protectionForm());
PDEBUG(" Level: %zu\n",
(*subchannel)->protectionLevel());
PDEBUG(" Option: %zu\n",
(*subchannel)->protectionOption());
// Configuring prbs genrerator
subchPrbs = new PrbsGenerator(subchSizeIn, 0x110);
// Configuring convolutionnal encoder
subchConv = new ConvEncoder(subchSizeIn);
// Configuring puncturing encoder
subchPunc = new PuncturingEncoder();
std::vector rules = (*subchannel)->get_rules();
std::vector::const_iterator rule;
for (rule = rules.begin(); rule != rules.end(); ++rule) {
PDEBUG(" Adding rule:\n");
PDEBUG(" Length: %zu\n", (*rule)->length());
PDEBUG(" Pattern: 0x%x\n", (*rule)->pattern());
subchPunc->append_rule(*(*rule));
}
PDEBUG(" Adding tail\n");
subchPunc->append_tail_rule(PuncturingRule(3, 0xcccccc));
// Configuring time interleaver
subchInterleaver = new TimeInterleaver(subchSizeOut);
myFlowgraph->connect(*subchannel, subchPrbs);
myFlowgraph->connect(subchPrbs, subchConv);
myFlowgraph->connect(subchConv, subchPunc);
myFlowgraph->connect(subchPunc, subchInterleaver);
myFlowgraph->connect(subchInterleaver, cifMux);
}
myFlowgraph->connect(cifMux, cifPart);
myFlowgraph->connect(cifPart, cifMap);
myFlowgraph->connect(cifMap, cifFreq);
myFlowgraph->connect(cifRef, cifDiff);
myFlowgraph->connect(cifFreq, cifDiff);
myFlowgraph->connect(cifNull, cifSig);
myFlowgraph->connect(cifDiff, cifSig);
if (myClockRate) {
myFlowgraph->connect(cifSig, cifCicEq);
myFlowgraph->connect(cifCicEq, cifOfdm);
} else {
myFlowgraph->connect(cifSig, cifOfdm);
}
myFlowgraph->connect(cifOfdm, cifGain);
myFlowgraph->connect(cifGain, cifGuard);
if (myFilterTapsFilename != NULL) {
myFlowgraph->connect(cifGuard, cifFilter);
if (cifRes != NULL) {
myFlowgraph->connect(cifFilter, cifRes);
myFlowgraph->connect(cifRes, myOutput);
} else {
myFlowgraph->connect(cifFilter, myOutput);
}
}
else { //no filtering
if (cifRes != NULL) {
myFlowgraph->connect(cifGuard, cifRes);
myFlowgraph->connect(cifRes, myOutput);
} else {
myFlowgraph->connect(cifGuard, myOutput);
}
}
}
////////////////////////////////////////////////////////////////////
// Proccessing data
////////////////////////////////////////////////////////////////////
myOutput->setOutput(dataOut);
return myFlowgraph->run();
}