/* Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Her Majesty the Queen in Right of Canada (Communications Research Center Canada) Copyright (C) 2014, 2015 Matthias P. Braendli, matthias.braendli@mpb.li http://opendigitalradio.org */ /* This file is part of ODR-DabMod. ODR-DabMod is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. ODR-DabMod is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>. */ #ifdef HAVE_CONFIG_H # include "config.h" #endif #include "porting.h" #include "Utils.h" #include "Log.h" #include "DabModulator.h" #include "InputMemory.h" #include "OutputFile.h" #include "FormatConverter.h" #if defined(HAVE_OUTPUT_UHD) # include "OutputUHD.h" #endif #include "OutputZeroMQ.h" #include "InputReader.h" #include "PcDebug.h" #include "TimestampDecoder.h" #include "FIRFilter.h" #include "RemoteControl.h" #include <boost/shared_ptr.hpp> #include <boost/make_shared.hpp> #include <boost/property_tree/ptree.hpp> #include <boost/property_tree/ini_parser.hpp> #include <complex> #include <string> #include <stdlib.h> #include <unistd.h> #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <stdexcept> #include <signal.h> #if HAVE_NETINET_IN_H # include <netinet/in.h> #endif #if HAVE_DECL__MM_MALLOC # include <mm_malloc.h> #else # define memalign(a, b) malloc(b) #endif #define ZMQ_INPUT_MAX_FRAME_QUEUE 500 typedef std::complex<float> complexf; using namespace boost; volatile sig_atomic_t running = 1; void signalHandler(int signalNb) { PDEBUG("signalHandler(%i)\n", signalNb); running = 0; } struct modulator_data { modulator_data() : inputReader(NULL), framecount(0), flowgraph(NULL), rcs(NULL) {} InputReader* inputReader; Buffer data; uint64_t framecount; Flowgraph* flowgraph; RemoteControllers* rcs; }; enum run_modulator_state { MOD_FAILURE, MOD_NORMAL_END, MOD_AGAIN }; run_modulator_state run_modulator(modulator_data& m); int launch_modulator(int argc, char* argv[]) { int ret = 0; bool loop = false; std::string inputName = ""; std::string inputTransport = "file"; unsigned inputMaxFramesQueued = ZMQ_INPUT_MAX_FRAME_QUEUE; std::string outputName; int useZeroMQOutput = 0; std::string zmqOutputSocketType = ""; int useFileOutput = 0; std::string fileOutputFormat = "complexf"; int useUHDOutput = 0; size_t outputRate = 2048000; size_t clockRate = 0; unsigned dabMode = 0; float digitalgain = 1.0f; float normalise = 1.0f; GainMode gainMode = GAIN_VAR; tii_config_t tiiConfig; /* UHD requires the input I and Q samples to be in the interval * [-1.0,1.0], otherwise they get truncated, which creates very * wide-spectrum spikes. Depending on the Transmission Mode, the * Gain Mode and the sample rate (and maybe other parameters), the * samples can have peaks up to about 48000. The value of 50000 * should guarantee that with a digital gain of 1.0, UHD never clips * our samples. */ const float normalise_factor = 50000.0f; std::string filterTapsFilename = ""; // Two configuration sources exist: command line and (new) INI file bool use_configuration_cmdline = false; bool use_configuration_file = false; std::string configuration_file; #if defined(HAVE_OUTPUT_UHD) OutputUHDConfig outputuhd_conf; #endif modulator_data m; // To handle the timestamp offset of the modulator unsigned tist_delay_stages = 0; double tist_offset_s = 0.0; shared_ptr<Flowgraph> flowgraph(new Flowgraph()); shared_ptr<FormatConverter> format_converter; shared_ptr<ModOutput> output; RemoteControllers rcs; m.rcs = &rcs; bool run_again = true; InputFileReader inputFileReader; #if defined(HAVE_ZEROMQ) shared_ptr<InputZeroMQReader> inputZeroMQReader(new InputZeroMQReader()); #endif struct sigaction sa; memset(&sa, 0, sizeof(struct sigaction)); sa.sa_handler = &signalHandler; if (sigaction(SIGINT, &sa, NULL) == -1) { perror("sigaction"); return EXIT_FAILURE; } // Set timezone to UTC setenv("TZ", "", 1); tzset(); while (true) { int c = getopt(argc, argv, "a:C:c:f:F:g:G:hlm:o:O:r:T:u:V"); if (c == -1) { break; } if (c != 'C') { use_configuration_cmdline = true; } switch (c) { case 'C': use_configuration_file = true; configuration_file = optarg; break; case 'a': digitalgain = strtof(optarg, NULL); break; case 'c': clockRate = strtol(optarg, NULL, 0); break; case 'f': #if defined(HAVE_OUTPUT_UHD) if (useUHDOutput) { fprintf(stderr, "Options -u and -f are mutually exclusive\n"); throw std::invalid_argument("Invalid command line options"); } #endif outputName = optarg; useFileOutput = 1; break; case 'F': #if defined(HAVE_OUTPUT_UHD) outputuhd_conf.frequency = strtof(optarg, NULL); #endif break; case 'g': gainMode = (GainMode)strtol(optarg, NULL, 0); break; case 'G': #if defined(HAVE_OUTPUT_UHD) outputuhd_conf.txgain = strtod(optarg, NULL); #endif break; case 'l': loop = true; break; case 'o': tist_offset_s = strtod(optarg, NULL); #if defined(HAVE_OUTPUT_UHD) outputuhd_conf.enableSync = true; #endif break; case 'm': dabMode = strtol(optarg, NULL, 0); break; case 'r': outputRate = strtol(optarg, NULL, 0); break; case 'T': filterTapsFilename = optarg; break; case 'u': #if defined(HAVE_OUTPUT_UHD) if (useFileOutput) { fprintf(stderr, "Options -u and -f are mutually exclusive\n"); throw std::invalid_argument("Invalid command line options"); } outputuhd_conf.device = optarg; useUHDOutput = 1; #endif break; case 'V': printVersion(); throw std::invalid_argument(""); break; case '?': case 'h': printUsage(argv[0]); throw std::invalid_argument(""); break; default: fprintf(stderr, "Option '%c' not coded yet!\n", c); ret = -1; throw std::invalid_argument("Invalid command line options"); } } std::cerr << "ODR-DabMod version " << #if defined(GITVERSION) GITVERSION #else VERSION #endif << std::endl; std::cerr << "Using FFT library " << #if defined(USE_FFTW) "FFTW" << #endif #if defined(USE_KISS_FFT) "Kiss FFT" << #endif #if defined(USE_SIMD) " (with fft_simd)" << #endif "\n"; std::cerr << "Compiled with features: " << #if defined(HAVE_ZEROMQ) "zeromq " << #endif #if defined(HAVE_OUTPUT_UHD) "output_uhd " << #endif "\n"; if (use_configuration_file && use_configuration_cmdline) { fprintf(stderr, "Warning: configuration file and command line parameters are defined:\n\t" "Command line parameters override settings in the configuration file !\n"); } // No argument given ? You can't be serious ! Show usage. if (argc == 1) { printUsage(argv[0]); throw std::invalid_argument("Invalid command line options"); } // If only one argument is given, interpret as configuration file name if (argc == 2) { use_configuration_file = true; configuration_file = argv[1]; } if (use_configuration_file) { // First read parameters from the file using boost::property_tree::ptree; ptree pt; try { read_ini(configuration_file, pt); } catch (boost::property_tree::ini_parser::ini_parser_error &e) { std::cerr << "Error, cannot read configuration file '" << configuration_file.c_str() << "'" << std::endl; std::cerr << " " << e.what() << std::endl; throw std::runtime_error("Cannot read configuration file"); } // remote controller: if (pt.get("remotecontrol.telnet", 0) == 1) { try { int telnetport = pt.get<int>("remotecontrol.telnetport"); RemoteControllerTelnet* telnetrc = new RemoteControllerTelnet(telnetport); rcs.add_controller(telnetrc); } catch (std::exception &e) { std::cerr << "Error: " << e.what() << "\n"; std::cerr << " telnet remote control enabled, but no telnetport defined.\n"; throw std::runtime_error("Configuration error"); } } #if defined(HAVE_ZEROMQ) if (pt.get("remotecontrol.zmqctrl", 0) == 1) { try { std::string zmqCtrlEndpoint = pt.get("remotecontrol.zmqctrlendpoint", ""); std::cerr << "ZmqCtrlEndpoint: " << zmqCtrlEndpoint << std::endl; RemoteControllerZmq* zmqrc = new RemoteControllerZmq(zmqCtrlEndpoint); rcs.add_controller(zmqrc); } catch (std::exception &e) { std::cerr << "Error: " << e.what() << "\n"; std::cerr << " zmq remote control enabled, but no endpoint defined.\n"; throw std::runtime_error("Configuration error"); } } #endif // input params: if (pt.get("input.loop", 0) == 1) { loop = true; } inputTransport = pt.get("input.transport", "file"); inputMaxFramesQueued = pt.get("input.max_frames_queued", ZMQ_INPUT_MAX_FRAME_QUEUE); inputName = pt.get("input.source", "/dev/stdin"); // log parameters: if (pt.get("log.syslog", 0) == 1) { LogToSyslog* log_syslog = new LogToSyslog(); etiLog.register_backend(log_syslog); } if (pt.get("log.filelog", 0) == 1) { std::string logfilename; try { logfilename = pt.get<std::string>("log.filename"); } catch (std::exception &e) { std::cerr << "Error: " << e.what() << "\n"; std::cerr << " Configuration enables file log, but does not specify log filename\n"; throw std::runtime_error("Configuration error"); } LogToFile* log_file = new LogToFile(logfilename); etiLog.register_backend(log_file); } // modulator parameters: gainMode = (GainMode)pt.get("modulator.gainmode", 0); dabMode = pt.get("modulator.mode", dabMode); clockRate = pt.get("modulator.dac_clk_rate", (size_t)0); digitalgain = pt.get("modulator.digital_gain", digitalgain); outputRate = pt.get("modulator.rate", outputRate); // FIR Filter parameters: if (pt.get("firfilter.enabled", 0) == 1) { try { filterTapsFilename = pt.get<std::string>("firfilter.filtertapsfile"); } catch (std::exception &e) { std::cerr << "Error: " << e.what() << "\n"; std::cerr << " Configuration enables firfilter, but does not specify filter taps file\n"; throw std::runtime_error("Configuration error"); } } // Output options std::string output_selected; try { output_selected = pt.get<std::string>("output.output"); } catch (std::exception &e) { std::cerr << "Error: " << e.what() << "\n"; std::cerr << " Configuration does not specify output\n"; throw std::runtime_error("Configuration error"); } if (output_selected == "file") { try { outputName = pt.get<std::string>("fileoutput.filename"); } catch (std::exception &e) { std::cerr << "Error: " << e.what() << "\n"; std::cerr << " Configuration does not specify file name for file output\n"; throw std::runtime_error("Configuration error"); } useFileOutput = 1; fileOutputFormat = pt.get("fileoutput.format", fileOutputFormat); } #if defined(HAVE_OUTPUT_UHD) else if (output_selected == "uhd") { outputuhd_conf.device = pt.get("uhdoutput.device", ""); outputuhd_conf.usrpType = pt.get("uhdoutput.type", ""); outputuhd_conf.subDevice = pt.get("uhdoutput.subdevice", ""); outputuhd_conf.masterClockRate = pt.get<long>("uhdoutput.master_clock_rate", 0); if (outputuhd_conf.device.find("master_clock_rate") != std::string::npos) { std::cerr << "Warning:" "setting master_clock_rate in [uhd] device is deprecated !\n"; } if (outputuhd_conf.device.find("type=") != std::string::npos) { std::cerr << "Warning:" "setting type in [uhd] device is deprecated !\n"; } outputuhd_conf.txgain = pt.get("uhdoutput.txgain", 0.0); outputuhd_conf.frequency = pt.get<double>("uhdoutput.frequency", 0); std::string chan = pt.get<std::string>("uhdoutput.channel", ""); outputuhd_conf.dabMode = dabMode; if (outputuhd_conf.frequency == 0 && chan == "") { std::cerr << " UHD output enabled, but neither frequency nor channel defined.\n"; throw std::runtime_error("Configuration error"); } else if (outputuhd_conf.frequency == 0) { double freq; if (chan == "5A") freq = 174928000; else if (chan == "5B") freq = 176640000; else if (chan == "5C") freq = 178352000; else if (chan == "5D") freq = 180064000; else if (chan == "6A") freq = 181936000; else if (chan == "6B") freq = 183648000; else if (chan == "6C") freq = 185360000; else if (chan == "6D") freq = 187072000; else if (chan == "7A") freq = 188928000; else if (chan == "7B") freq = 190640000; else if (chan == "7C") freq = 192352000; else if (chan == "7D") freq = 194064000; else if (chan == "8A") freq = 195936000; else if (chan == "8B") freq = 197648000; else if (chan == "8C") freq = 199360000; else if (chan == "8D") freq = 201072000; else if (chan == "9A") freq = 202928000; else if (chan == "9B") freq = 204640000; else if (chan == "9C") freq = 206352000; else if (chan == "9D") freq = 208064000; else if (chan == "10A") freq = 209936000; else if (chan == "10B") freq = 211648000; else if (chan == "10C") freq = 213360000; else if (chan == "10D") freq = 215072000; else if (chan == "11A") freq = 216928000; else if (chan == "11B") freq = 218640000; else if (chan == "11C") freq = 220352000; else if (chan == "11D") freq = 222064000; else if (chan == "12A") freq = 223936000; else if (chan == "12B") freq = 225648000; else if (chan == "12C") freq = 227360000; else if (chan == "12D") freq = 229072000; else if (chan == "13A") freq = 230784000; else if (chan == "13B") freq = 232496000; else if (chan == "13C") freq = 234208000; else if (chan == "13D") freq = 235776000; else if (chan == "13E") freq = 237488000; else if (chan == "13F") freq = 239200000; else { std::cerr << " UHD output: channel " << chan << " does not exist in table\n"; throw std::out_of_range("UHD channel selection error"); } outputuhd_conf.frequency = freq; } else if (outputuhd_conf.frequency != 0 && chan != "") { std::cerr << " UHD output: cannot define both frequency and channel.\n"; throw std::runtime_error("Configuration error"); } outputuhd_conf.refclk_src = pt.get("uhdoutput.refclk_source", "int"); outputuhd_conf.pps_src = pt.get("uhdoutput.pps_source", "int"); outputuhd_conf.pps_polarity = pt.get("uhdoutput.pps_polarity", "pos"); std::string behave = pt.get("uhdoutput.behaviour_refclk_lock_lost", "ignore"); if (behave == "crash") { outputuhd_conf.refclk_lock_loss_behaviour = CRASH; } else if (behave == "ignore") { outputuhd_conf.refclk_lock_loss_behaviour = IGNORE; } else { std::cerr << "Error: UHD output: behaviour_refclk_lock_lost invalid." << std::endl; throw std::runtime_error("Configuration error"); } outputuhd_conf.maxGPSHoldoverTime = pt.get("uhdoutput.max_gps_holdover_time", 0); useUHDOutput = 1; } #endif #if defined(HAVE_ZEROMQ) else if (output_selected == "zmq") { outputName = pt.get<std::string>("zmqoutput.listen"); zmqOutputSocketType = pt.get<std::string>("zmqoutput.socket_type"); useZeroMQOutput = 1; } #endif else { std::cerr << "Error: Invalid output defined.\n"; throw std::runtime_error("Configuration error"); } #if defined(HAVE_OUTPUT_UHD) outputuhd_conf.enableSync = (pt.get("delaymanagement.synchronous", 0) == 1); if (outputuhd_conf.enableSync) { std::string delay_mgmt = pt.get<std::string>("delaymanagement.management", ""); std::string fixedoffset = pt.get<std::string>("delaymanagement.fixedoffset", ""); std::string offset_filename = pt.get<std::string>("delaymanagement.dynamicoffsetfile", ""); if (not(delay_mgmt.empty() and fixedoffset.empty() and offset_filename.empty())) { std::cerr << "Warning: you are using the old config syntax for the offset management.\n"; std::cerr << " Please see the example.ini configuration for the new settings.\n"; } try { tist_offset_s = pt.get<double>("delaymanagement.offset"); } catch (std::exception &e) { std::cerr << "Error: delaymanagement: synchronous is enabled, but no offset defined!\n"; throw std::runtime_error("Configuration error"); } } outputuhd_conf.muteNoTimestamps = (pt.get("delaymanagement.mutenotimestamps", 0) == 1); #endif /* Read TII parameters from config file */ tiiConfig.enable = pt.get("tii.enable", 0); tiiConfig.comb = pt.get("tii.comb", 0); tiiConfig.pattern = pt.get("tii.pattern", 0); } if (rcs.get_no_controllers() == 0) { etiLog.level(warn) << "No Remote-Control started"; rcs.add_controller(new RemoteControllerDummy()); } etiLog.level(info) << "Starting up"; // When using the FIRFilter, increase the modulator offset pipelining delay // by the correct amount if (filterTapsFilename != "") { tist_delay_stages += FIRFILTER_PIPELINE_DELAY; } // Setting ETI input filename if (use_configuration_cmdline && inputName == "") { if (optind < argc) { inputName = argv[optind++]; if (inputName.substr(0, 4) == "zmq+" && inputName.find("://") != std::string::npos) { // if the name starts with zmq+XYZ://somewhere:port inputTransport = "zeromq"; } } else { inputName = "/dev/stdin"; } } // Checking unused arguments if (use_configuration_cmdline && optind != argc) { fprintf(stderr, "Invalid arguments:"); while (optind != argc) { fprintf(stderr, " %s", argv[optind++]); } fprintf(stderr, "\n"); printUsage(argv[0]); ret = -1; etiLog.level(error) << "Received invalid command line arguments"; throw std::invalid_argument("Invalid command line options"); } if (!useFileOutput && !useUHDOutput && !useZeroMQOutput) { etiLog.level(error) << "Output not specified"; fprintf(stderr, "Must specify output !"); throw std::runtime_error("Configuration error"); } // Print settings fprintf(stderr, "Input\n"); fprintf(stderr, " Type: %s\n", inputTransport.c_str()); fprintf(stderr, " Source: %s\n", inputName.c_str()); fprintf(stderr, "Output\n"); if (useFileOutput) { fprintf(stderr, " Name: %s\n", outputName.c_str()); } #if defined(HAVE_OUTPUT_UHD) else if (useUHDOutput) { fprintf(stderr, " UHD\n" " Device: %s\n" " Type: %s\n" " master_clock_rate: %ld\n" " refclk: %s\n" " pps source: %s\n", outputuhd_conf.device.c_str(), outputuhd_conf.usrpType.c_str(), outputuhd_conf.masterClockRate, outputuhd_conf.refclk_src.c_str(), outputuhd_conf.pps_src.c_str()); } #endif else if (useZeroMQOutput) { fprintf(stderr, " ZeroMQ\n" " Listening on: %s\n" " Socket type : %s\n", outputName.c_str(), zmqOutputSocketType.c_str()); } fprintf(stderr, " Sampling rate: "); if (outputRate > 1000) { if (outputRate > 1000000) { fprintf(stderr, "%.4g MHz\n", outputRate / 1000000.0f); } else { fprintf(stderr, "%.4g kHz\n", outputRate / 1000.0f); } } else { fprintf(stderr, "%zu Hz\n", outputRate); } if (inputTransport == "file") { // Opening ETI input file if (inputFileReader.Open(inputName, loop) == -1) { fprintf(stderr, "Unable to open input file!\n"); etiLog.level(error) << "Unable to open input file!"; ret = -1; throw std::runtime_error("Unable to open input"); } m.inputReader = &inputFileReader; } else if (inputTransport == "zeromq") { #if !defined(HAVE_ZEROMQ) fprintf(stderr, "Error, ZeroMQ input transport selected, but not compiled in!\n"); ret = -1; throw std::runtime_error("Unable to open input"); #else inputZeroMQReader->Open(inputName, inputMaxFramesQueued); m.inputReader = inputZeroMQReader.get(); #endif } else { fprintf(stderr, "Error, invalid input transport %s selected!\n", inputTransport.c_str()); ret = -1; throw std::runtime_error("Unable to open input"); } if (useFileOutput) { if (fileOutputFormat == "complexf") { output = make_shared<OutputFile>(outputName); } else if (fileOutputFormat == "s8") { // We must normalise the samples to the interval [-127.0; 127.0] normalise = 127.0f / normalise_factor; format_converter = make_shared<FormatConverter>(); output = make_shared<OutputFile>(outputName); } } #if defined(HAVE_OUTPUT_UHD) else if (useUHDOutput) { normalise = 1.0f / normalise_factor; outputuhd_conf.sampleRate = outputRate; output = make_shared<OutputUHD>(outputuhd_conf); ((OutputUHD*)output.get())->enrol_at(rcs); } #endif #if defined(HAVE_ZEROMQ) else if (useZeroMQOutput) { /* We normalise the same way as for the UHD output */ normalise = 1.0f / normalise_factor; if (zmqOutputSocketType == "pub") { output = make_shared<OutputZeroMQ>(outputName, ZMQ_PUB); } else if (zmqOutputSocketType == "rep") { output = make_shared<OutputZeroMQ>(outputName, ZMQ_REP); } else { std::stringstream ss; ss << "ZeroMQ output socket type " << zmqOutputSocketType << " invalid"; throw std::invalid_argument(ss.str()); } } #endif while (run_again) { Flowgraph flowgraph; m.flowgraph = &flowgraph; m.data.setLength(6144); shared_ptr<InputMemory> input(new InputMemory(&m.data)); shared_ptr<DabModulator> modulator( new DabModulator(tist_offset_s, tist_delay_stages, &rcs, tiiConfig, outputRate, clockRate, dabMode, gainMode, digitalgain, normalise, filterTapsFilename)); flowgraph.connect(input, modulator); if (format_converter) { flowgraph.connect(modulator, format_converter); flowgraph.connect(format_converter, output); } else { flowgraph.connect(modulator, output); } #if defined(HAVE_OUTPUT_UHD) if (useUHDOutput) { ((OutputUHD*)output.get())->setETIReader(modulator->getEtiReader()); } #endif m.inputReader->PrintInfo(); run_modulator_state st = run_modulator(m); switch (st) { case MOD_FAILURE: etiLog.level(error) << "Modulator failure."; run_again = false; ret = 1; break; #if defined(HAVE_ZEROMQ) case MOD_AGAIN: etiLog.level(warn) << "Restart modulator."; running = true; if (inputTransport == "zeromq") { run_again = true; // Create a new input reader inputZeroMQReader = make_shared<InputZeroMQReader>(); inputZeroMQReader->Open(inputName, inputMaxFramesQueued); m.inputReader = inputZeroMQReader.get(); } break; #endif case MOD_NORMAL_END: default: etiLog.level(info) << "modulator stopped."; ret = 0; run_again = false; break; } fprintf(stderr, "\n\n"); etiLog.level(info) << m.framecount << " DAB frames encoded"; etiLog.level(info) << ((float)m.framecount * 0.024f) << " seconds encoded"; m.data.setLength(0); } //////////////////////////////////////////////////////////////////////// // Cleaning things //////////////////////////////////////////////////////////////////////// etiLog.level(info) << "Terminating"; return ret; } run_modulator_state run_modulator(modulator_data& m) { run_modulator_state ret = MOD_FAILURE; try { while (running) { int framesize; PDEBUG("*****************************************\n"); PDEBUG("* Starting main loop\n"); PDEBUG("*****************************************\n"); while ((framesize = m.inputReader->GetNextFrame(m.data.getData())) > 0) { if (!running) { break; } m.framecount++; PDEBUG("*****************************************\n"); PDEBUG("* Read frame %lu\n", m.framecount); PDEBUG("*****************************************\n"); //////////////////////////////////////////////////////////////// // Processing data //////////////////////////////////////////////////////////////// m.flowgraph->run(); /* Check every once in a while if the remote control * is still working */ if (m.rcs->get_no_controllers() > 0 && (m.framecount % 250) == 0) { m.rcs->check_faults(); } } if (framesize == 0) { etiLog.level(info) << "End of file reached."; } else { etiLog.level(error) << "Input read error."; } running = 0; ret = MOD_NORMAL_END; } #if defined(HAVE_OUTPUT_UHD) } catch (fct_discontinuity_error& e) { // The OutputUHD saw a FCT discontinuity etiLog.level(warn) << e.what(); ret = MOD_AGAIN; #endif } catch (zmq_input_overflow& e) { // The ZeroMQ input has overflowed its buffer etiLog.level(warn) << e.what(); ret = MOD_AGAIN; } catch (std::exception& e) { etiLog.level(error) << "Exception caught: " << e.what(); ret = MOD_FAILURE; } return ret; } int main(int argc, char* argv[]) { try { return launch_modulator(argc, argv); } catch (std::invalid_argument& e) { std::string what(e.what()); if (not what.empty()) { std::cerr << "Modulator error: " << what << std::endl; } } catch (std::runtime_error& e) { std::cerr << "Modulator runtime error: " << e.what() << std::endl; } }