/*
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
Her Majesty the Queen in Right of Canada (Communications Research
Center Canada)
Copyright (C) 2014, 2015
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
*/
/*
This file is part of ODR-DabMod.
ODR-DabMod is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DabMod is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DabMod. If not, see .
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include "porting.h"
#include "Utils.h"
#include "Log.h"
#include "DabModulator.h"
#include "InputMemory.h"
#include "OutputFile.h"
#include "FormatConverter.h"
#if defined(HAVE_OUTPUT_UHD)
# include "OutputUHD.h"
#endif
#include "OutputZeroMQ.h"
#include "InputReader.h"
#include "PcDebug.h"
#include "TimestampDecoder.h"
#include "FIRFilter.h"
#include "RemoteControl.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_NETINET_IN_H
# include
#endif
#if HAVE_DECL__MM_MALLOC
# include
#else
# define memalign(a, b) malloc(b)
#endif
#define ZMQ_INPUT_MAX_FRAME_QUEUE 50
typedef std::complex complexf;
using namespace boost;
volatile sig_atomic_t running = 1;
void signalHandler(int signalNb)
{
PDEBUG("signalHandler(%i)\n", signalNb);
running = 0;
}
struct modulator_data
{
modulator_data() :
inputReader(NULL),
framecount(0),
flowgraph(NULL),
rcs(NULL) {}
InputReader* inputReader;
Buffer data;
uint64_t framecount;
Flowgraph* flowgraph;
RemoteControllers* rcs;
};
enum run_modulator_state {
MOD_FAILURE,
MOD_NORMAL_END,
MOD_AGAIN
};
run_modulator_state run_modulator(modulator_data& m);
int main(int argc, char* argv[])
{
int ret = 0;
bool loop = false;
std::string inputName = "";
std::string inputTransport = "file";
unsigned inputMaxFramesQueued = ZMQ_INPUT_MAX_FRAME_QUEUE;
std::string outputName;
int useZeroMQOutput = 0;
int useFileOutput = 0;
std::string fileOutputFormat = "complexf";
int useUHDOutput = 0;
size_t outputRate = 2048000;
size_t clockRate = 0;
unsigned dabMode = 0;
float digitalgain = 1.0f;
float normalise = 1.0f;
GainMode gainMode = GAIN_VAR;
/* UHD requires the input I and Q samples to be in the interval
* [-1.0,1.0], otherwise they get truncated, which creates very
* wide-spectrum spikes. Depending on the Transmission Mode, the
* Gain Mode and the sample rate (and maybe other parameters), the
* samples can have peaks up to about 48000. The value of 50000
* should guarantee that with a digital gain of 1.0, UHD never clips
* our samples.
*/
const float normalise_factor = 50000.0f;
std::string filterTapsFilename = "";
// Two configuration sources exist: command line and (new) INI file
bool use_configuration_cmdline = false;
bool use_configuration_file = false;
std::string configuration_file;
#if defined(HAVE_OUTPUT_UHD)
OutputUHDConfig outputuhd_conf;
#endif
modulator_data m;
// To handle the timestamp offset of the modulator
struct modulator_offset_config modconf;
modconf.use_offset_file = false;
modconf.use_offset_fixed = false;
modconf.delay_calculation_pipeline_stages = 0;
shared_ptr flowgraph(new Flowgraph());
shared_ptr format_converter;
shared_ptr output;
RemoteControllers rcs;
m.rcs = &rcs;
bool run_again = true;
Logger logger;
InputFileReader inputFileReader(logger);
#if defined(HAVE_ZEROMQ)
InputZeroMQReader inputZeroMQReader(logger);
#endif
struct sigaction sa;
memset(&sa, 0, sizeof(struct sigaction));
sa.sa_handler = &signalHandler;
if (sigaction(SIGINT, &sa, NULL) == -1) {
perror("sigaction");
return EXIT_FAILURE;
}
// Set timezone to UTC
setenv("TZ", "", 1);
tzset();
while (true) {
int c = getopt(argc, argv, "a:C:c:f:F:g:G:hlm:o:O:r:T:u:V");
if (c == -1) {
break;
}
if (c != 'C') {
use_configuration_cmdline = true;
}
switch (c) {
case 'C':
use_configuration_file = true;
configuration_file = optarg;
break;
case 'a':
digitalgain = strtof(optarg, NULL);
break;
case 'c':
clockRate = strtol(optarg, NULL, 0);
break;
case 'f':
#if defined(HAVE_OUTPUT_UHD)
if (useUHDOutput) {
fprintf(stderr, "Options -u and -f are mutually exclusive\n");
throw std::invalid_argument("Invalid command line options");
}
#endif
outputName = optarg;
useFileOutput = 1;
break;
case 'F':
#if defined(HAVE_OUTPUT_UHD)
outputuhd_conf.frequency = strtof(optarg, NULL);
#endif
break;
case 'g':
gainMode = (GainMode)strtol(optarg, NULL, 0);
break;
case 'G':
#if defined(HAVE_OUTPUT_UHD)
outputuhd_conf.txgain = strtod(optarg, NULL);
#endif
break;
case 'l':
loop = true;
break;
case 'o':
if (modconf.use_offset_file)
{
fprintf(stderr, "Options -o and -O are mutually exclusive\n");
throw std::invalid_argument("Invalid command line options");
}
modconf.use_offset_fixed = true;
modconf.offset_fixed = strtod(optarg, NULL);
#if defined(HAVE_OUTPUT_UHD)
outputuhd_conf.enableSync = true;
#endif
break;
case 'O':
if (modconf.use_offset_fixed)
{
fprintf(stderr, "Options -o and -O are mutually exclusive\n");
throw std::invalid_argument("Invalid command line options");
}
modconf.use_offset_file = true;
modconf.offset_filename = std::string(optarg);
#if defined(HAVE_OUTPUT_UHD)
outputuhd_conf.enableSync = true;
#endif
break;
case 'm':
dabMode = strtol(optarg, NULL, 0);
break;
case 'r':
outputRate = strtol(optarg, NULL, 0);
break;
case 'T':
filterTapsFilename = optarg;
break;
case 'u':
#if defined(HAVE_OUTPUT_UHD)
if (useFileOutput) {
fprintf(stderr, "Options -u and -f are mutually exclusive\n");
throw std::invalid_argument("Invalid command line options");
}
outputuhd_conf.device = optarg;
useUHDOutput = 1;
#endif
break;
case 'V':
printVersion();
throw std::invalid_argument("");
break;
case '?':
case 'h':
printUsage(argv[0]);
throw std::invalid_argument("");
break;
default:
fprintf(stderr, "Option '%c' not coded yet!\n", c);
ret = -1;
throw std::invalid_argument("Invalid command line options");
}
}
std::cerr << "ODR-DabMod version " <<
#if defined(GITVERSION)
GITVERSION
#else
VERSION
#endif
<< std::endl;
std::cerr << "Using FFT library " <<
#if defined(USE_FFTW)
"FFTW" <<
#endif
#if defined(USE_KISS_FFT)
"Kiss FFT" <<
#endif
#if defined(USE_SIMD)
" (with fft_simd)" <<
#endif
"\n";
std::cerr << "Compiled with features: " <<
#if defined(HAVE_ZEROMQ)
"zeromq " <<
#endif
#if defined(HAVE_OUTPUT_UHD)
"output_uhd " <<
#endif
"\n";
if (use_configuration_file && use_configuration_cmdline) {
fprintf(stderr, "Warning: configuration file and command line parameters are defined:\n\t"
"Command line parameters override settings in the configuration file !\n");
}
// No argument given ? You can't be serious ! Show usage.
if (argc == 1) {
printUsage(argv[0]);
throw std::invalid_argument("Invalid command line options");
}
// If only one argument is given, interpret as configuration file name
if (argc == 2) {
use_configuration_file = true;
configuration_file = argv[1];
}
if (use_configuration_file) {
// First read parameters from the file
using boost::property_tree::ptree;
ptree pt;
try {
read_ini(configuration_file, pt);
}
catch (boost::property_tree::ini_parser::ini_parser_error &e)
{
fprintf(stderr, "Error, cannot read configuration file '%s'\n", configuration_file.c_str());
throw std::runtime_error("Cannot read configuration file");
}
// remote controller:
if (pt.get("remotecontrol.telnet", 0) == 1) {
try {
int telnetport = pt.get("remotecontrol.telnetport");
RemoteControllerTelnet* telnetrc = new RemoteControllerTelnet(telnetport);
rcs.add_controller(telnetrc);
}
catch (std::exception &e) {
std::cerr << "Error: " << e.what() << "\n";
std::cerr << " telnet remote control enabled, but no telnetport defined.\n";
throw std::runtime_error("Configuration error");
}
}
#if defined(HAVE_ZEROMQ)
if (pt.get("remotecontrol.zmqctrl", 0) == 1) {
try {
std::string zmqCtrlEndpoint = pt.get("remotecontrol.zmqctrlendpoint", "");
std::cerr << "ZmqCtrlEndpoint: " << zmqCtrlEndpoint << std::endl;
RemoteControllerZmq* zmqrc = new RemoteControllerZmq(zmqCtrlEndpoint);
rcs.add_controller(zmqrc);
}
catch (std::exception &e) {
std::cerr << "Error: " << e.what() << "\n";
std::cerr << " zmq remote control enabled, but no endpoint defined.\n";
throw std::runtime_error("Configuration error");
}
}
#endif
// input params:
if (pt.get("input.loop", 0) == 1) {
loop = true;
}
inputTransport = pt.get("input.transport", "file");
inputMaxFramesQueued = pt.get("input.max_frames_queued",
ZMQ_INPUT_MAX_FRAME_QUEUE);
inputName = pt.get("input.source", "/dev/stdin");
// log parameters:
if (pt.get("log.syslog", 0) == 1) {
LogToSyslog* log_syslog = new LogToSyslog();
logger.register_backend(log_syslog);
}
if (pt.get("log.filelog", 0) == 1) {
std::string logfilename;
try {
logfilename = pt.get("log.filename");
}
catch (std::exception &e) {
std::cerr << "Error: " << e.what() << "\n";
std::cerr << " Configuration enables file log, but does not specify log filename\n";
throw std::runtime_error("Configuration error");
}
LogToFile* log_file = new LogToFile(logfilename);
logger.register_backend(log_file);
}
// modulator parameters:
gainMode = (GainMode)pt.get("modulator.gainmode", 0);
dabMode = pt.get("modulator.mode", dabMode);
clockRate = pt.get("modulator.dac_clk_rate", (size_t)0);
digitalgain = pt.get("modulator.digital_gain", digitalgain);
outputRate = pt.get("modulator.rate", outputRate);
// FIR Filter parameters:
if (pt.get("firfilter.enabled", 0) == 1) {
try {
filterTapsFilename = pt.get("firfilter.filtertapsfile");
}
catch (std::exception &e) {
std::cerr << "Error: " << e.what() << "\n";
std::cerr << " Configuration enables firfilter, but does not specify filter taps file\n";
throw std::runtime_error("Configuration error");
}
}
// Output options
std::string output_selected;
try {
output_selected = pt.get("output.output");
}
catch (std::exception &e) {
std::cerr << "Error: " << e.what() << "\n";
std::cerr << " Configuration does not specify output\n";
throw std::runtime_error("Configuration error");
}
if (output_selected == "file") {
try {
outputName = pt.get("fileoutput.filename");
}
catch (std::exception &e) {
std::cerr << "Error: " << e.what() << "\n";
std::cerr << " Configuration does not specify file name for file output\n";
throw std::runtime_error("Configuration error");
}
useFileOutput = 1;
fileOutputFormat = pt.get("fileoutput.format", fileOutputFormat);
}
#if defined(HAVE_OUTPUT_UHD)
else if (output_selected == "uhd") {
outputuhd_conf.device = pt.get("uhdoutput.device", "");
outputuhd_conf.usrpType = pt.get("uhdoutput.type", "");
outputuhd_conf.subDevice = pt.get("uhdoutput.subdevice", "");
outputuhd_conf.masterClockRate = pt.get("uhdoutput.master_clock_rate", 0);
if (outputuhd_conf.device.find("master_clock_rate") != std::string::npos) {
std::cerr << "Warning:"
"setting master_clock_rate in [uhd] device is deprecated !\n";
}
if (outputuhd_conf.device.find("type=") != std::string::npos) {
std::cerr << "Warning:"
"setting type in [uhd] device is deprecated !\n";
}
outputuhd_conf.txgain = pt.get("uhdoutput.txgain", 0.0);
outputuhd_conf.frequency = pt.get("uhdoutput.frequency", 0);
std::string chan = pt.get("uhdoutput.channel", "");
outputuhd_conf.dabMode = dabMode;
if (outputuhd_conf.frequency == 0 && chan == "") {
std::cerr << " UHD output enabled, but neither frequency nor channel defined.\n";
throw std::runtime_error("Configuration error");
}
else if (outputuhd_conf.frequency == 0) {
double freq;
if (chan == "5A") freq = 174928000;
else if (chan == "5B") freq = 176640000;
else if (chan == "5C") freq = 178352000;
else if (chan == "5D") freq = 180064000;
else if (chan == "6A") freq = 181936000;
else if (chan == "6B") freq = 183648000;
else if (chan == "6C") freq = 185360000;
else if (chan == "6D") freq = 187072000;
else if (chan == "7A") freq = 188928000;
else if (chan == "7B") freq = 190640000;
else if (chan == "7C") freq = 192352000;
else if (chan == "7D") freq = 194064000;
else if (chan == "8A") freq = 195936000;
else if (chan == "8B") freq = 197648000;
else if (chan == "8C") freq = 199360000;
else if (chan == "8D") freq = 201072000;
else if (chan == "9A") freq = 202928000;
else if (chan == "9B") freq = 204640000;
else if (chan == "9C") freq = 206352000;
else if (chan == "9D") freq = 208064000;
else if (chan == "10A") freq = 209936000;
else if (chan == "10B") freq = 211648000;
else if (chan == "10C") freq = 213360000;
else if (chan == "10D") freq = 215072000;
else if (chan == "11A") freq = 216928000;
else if (chan == "11B") freq = 218640000;
else if (chan == "11C") freq = 220352000;
else if (chan == "11D") freq = 222064000;
else if (chan == "12A") freq = 223936000;
else if (chan == "12B") freq = 225648000;
else if (chan == "12C") freq = 227360000;
else if (chan == "12D") freq = 229072000;
else if (chan == "13A") freq = 230784000;
else if (chan == "13B") freq = 232496000;
else if (chan == "13C") freq = 234208000;
else if (chan == "13D") freq = 235776000;
else if (chan == "13E") freq = 237488000;
else if (chan == "13F") freq = 239200000;
else {
std::cerr << " UHD output: channel " << chan << " does not exist in table\n";
throw std::out_of_range("UHD channel selection error");
}
outputuhd_conf.frequency = freq;
}
else if (outputuhd_conf.frequency != 0 && chan != "") {
std::cerr << " UHD output: cannot define both frequency and channel.\n";
throw std::runtime_error("Configuration error");
}
outputuhd_conf.refclk_src = pt.get("uhdoutput.refclk_source", "int");
outputuhd_conf.pps_src = pt.get("uhdoutput.pps_source", "int");
outputuhd_conf.pps_polarity = pt.get("uhdoutput.pps_polarity", "pos");
std::string behave = pt.get("uhdoutput.behaviour_refclk_lock_lost", "ignore");
if (behave == "crash") {
outputuhd_conf.refclk_lock_loss_behaviour = CRASH;
}
else if (behave == "ignore") {
outputuhd_conf.refclk_lock_loss_behaviour = IGNORE;
}
else {
std::cerr << "Error: UHD output: behaviour_refclk_lock_lost invalid." << std::endl;
throw std::runtime_error("Configuration error");
}
useUHDOutput = 1;
}
#endif
#if defined(HAVE_ZEROMQ)
else if (output_selected == "zmq") {
outputName = pt.get("zmqoutput.listen");
useZeroMQOutput = 1;
}
#endif
else {
std::cerr << "Error: Invalid output defined.\n";
throw std::runtime_error("Configuration error");
}
#if defined(HAVE_OUTPUT_UHD)
outputuhd_conf.enableSync = (pt.get("delaymanagement.synchronous", 0) == 1);
if (outputuhd_conf.enableSync) {
try {
std::string delay_mgmt = pt.get("delaymanagement.management");
if (delay_mgmt == "fixed") {
modconf.offset_fixed = pt.get("delaymanagement.fixedoffset");
modconf.use_offset_fixed = true;
}
else if (delay_mgmt == "dynamic") {
modconf.offset_filename = pt.get("delaymanagement.dynamicoffsetfile");
modconf.use_offset_file = true;
}
else {
throw std::runtime_error("invalid management value");
}
}
catch (std::exception &e) {
std::cerr << "Error: " << e.what() << "\n";
std::cerr << " Synchronised transmission enabled, but delay management specification is incomplete.\n";
throw std::runtime_error("Configuration error");
}
}
outputuhd_conf.muteNoTimestamps = (pt.get("delaymanagement.mutenotimestamps", 0) == 1);
#endif
}
if (rcs.get_no_controllers() == 0) {
logger.level(warn) << "No Remote-Control started";
rcs.add_controller(new RemoteControllerDummy());
}
logger.level(info) << "Starting up";
if (!(modconf.use_offset_file || modconf.use_offset_fixed)) {
logger.level(debug) << "No Modulator offset defined, setting to 0";
modconf.use_offset_fixed = true;
modconf.offset_fixed = 0;
}
// When using the FIRFilter, increase the modulator offset pipelining delay
// by the correct amount
if (filterTapsFilename != "") {
modconf.delay_calculation_pipeline_stages += FIRFILTER_PIPELINE_DELAY;
}
// Setting ETI input filename
if (use_configuration_cmdline && inputName == "") {
if (optind < argc) {
inputName = argv[optind++];
if (inputName.substr(0, 4) == "zmq+" &&
inputName.find("://") != std::string::npos) {
// if the name starts with zmq+XYZ://somewhere:port
inputTransport = "zeromq";
}
}
else {
inputName = "/dev/stdin";
}
}
// Checking unused arguments
if (use_configuration_cmdline && optind != argc) {
fprintf(stderr, "Invalid arguments:");
while (optind != argc) {
fprintf(stderr, " %s", argv[optind++]);
}
fprintf(stderr, "\n");
printUsage(argv[0]);
ret = -1;
logger.level(error) << "Received invalid command line arguments";
throw std::invalid_argument("Invalid command line options");
}
if (!useFileOutput && !useUHDOutput && !useZeroMQOutput) {
logger.level(error) << "Output not specified";
fprintf(stderr, "Must specify output !");
throw std::runtime_error("Configuration error");
}
// Print settings
fprintf(stderr, "Input\n");
fprintf(stderr, " Type: %s\n", inputTransport.c_str());
fprintf(stderr, " Source: %s\n", inputName.c_str());
fprintf(stderr, "Output\n");
if (useFileOutput) {
fprintf(stderr, " Name: %s\n", outputName.c_str());
}
#if defined(HAVE_OUTPUT_UHD)
else if (useUHDOutput) {
fprintf(stderr, " UHD\n"
" Device: %s\n"
" Type: %s\n"
" master_clock_rate: %ld\n",
outputuhd_conf.device.c_str(),
outputuhd_conf.usrpType.c_str(),
outputuhd_conf.masterClockRate);
}
#endif
else if (useZeroMQOutput) {
fprintf(stderr, " ZeroMQ\n"
" Listening on: %s\n",
outputName.c_str());
}
fprintf(stderr, " Sampling rate: ");
if (outputRate > 1000) {
if (outputRate > 1000000) {
fprintf(stderr, "%.4g MHz\n", outputRate / 1000000.0f);
} else {
fprintf(stderr, "%.4g kHz\n", outputRate / 1000.0f);
}
} else {
fprintf(stderr, "%zu Hz\n", outputRate);
}
if (inputTransport == "file") {
// Opening ETI input file
if (inputFileReader.Open(inputName, loop) == -1) {
fprintf(stderr, "Unable to open input file!\n");
logger.level(error) << "Unable to open input file!";
ret = -1;
throw std::runtime_error("Unable to open input");
}
m.inputReader = &inputFileReader;
}
else if (inputTransport == "zeromq") {
#if !defined(HAVE_ZEROMQ)
fprintf(stderr, "Error, ZeroMQ input transport selected, but not compiled in!\n");
ret = -1;
throw std::runtime_error("Unable to open input");
#else
// The URL might start with zmq+tcp://
if (inputName.substr(0, 4) == "zmq+") {
inputZeroMQReader.Open(inputName.substr(4), inputMaxFramesQueued);
}
else {
inputZeroMQReader.Open(inputName, inputMaxFramesQueued);
}
m.inputReader = &inputZeroMQReader;
#endif
}
else
{
fprintf(stderr, "Error, invalid input transport %s selected!\n", inputTransport.c_str());
ret = -1;
throw std::runtime_error("Unable to open input");
}
while (run_again) {
Flowgraph flowgraph;
if (useFileOutput) {
if (fileOutputFormat == "complexf") {
output = shared_ptr(new OutputFile(outputName));
}
else if (fileOutputFormat == "s8") {
// We must normalise the samples to the interval [-127.0; 127.0]
normalise = 127.0f / normalise_factor;
format_converter = shared_ptr(new FormatConverter());
output = shared_ptr(new OutputFile(outputName));
}
}
#if defined(HAVE_OUTPUT_UHD)
else if (useUHDOutput) {
normalise = 1.0f / normalise_factor;
outputuhd_conf.sampleRate = outputRate;
output = shared_ptr(new OutputUHD(outputuhd_conf, logger));
((OutputUHD*)output.get())->enrol_at(rcs);
}
#endif
#if defined(HAVE_ZEROMQ)
else if (useZeroMQOutput) {
/* We normalise the same way as for the UHD output */
normalise = 1.0f / normalise_factor;
output = shared_ptr(new OutputZeroMQ(outputName));
}
#endif
m.flowgraph = &flowgraph;
m.data.setLength(6144);
shared_ptr input(new InputMemory(&m.data));
shared_ptr modulator(
new DabModulator(modconf, &rcs, logger, outputRate, clockRate,
dabMode, gainMode, digitalgain, normalise, filterTapsFilename));
flowgraph.connect(input, modulator);
if (format_converter) {
flowgraph.connect(modulator, format_converter);
flowgraph.connect(format_converter, output);
}
else {
flowgraph.connect(modulator, output);
}
#if defined(HAVE_OUTPUT_UHD)
if (useUHDOutput) {
((OutputUHD*)output.get())->setETIReader(modulator->getEtiReader());
}
#endif
m.inputReader->PrintInfo();
run_modulator_state st = run_modulator(m);
switch (st) {
case MOD_FAILURE:
fprintf(stderr, "\nModulator failure.\n");
run_again = false;
ret = 1;
break;
case MOD_NORMAL_END:
fprintf(stderr, "\nModulator stopped.\n");
ret = 0;
run_again = false;
break;
case MOD_AGAIN:
fprintf(stderr, "\nRestart modulator\n");
run_again = true;
running = true;
break;
}
fprintf(stderr, "\n\n");
fprintf(stderr, "%lu DAB frames encoded\n", m.framecount);
fprintf(stderr, "%f seconds encoded\n", (float)m.framecount * 0.024f);
fprintf(stderr, "\nCleaning flowgraph...\n");
m.data.setLength(0);
}
////////////////////////////////////////////////////////////////////////
// Cleaning things
////////////////////////////////////////////////////////////////////////
logger.level(info) << "Terminating";
return ret;
}
run_modulator_state run_modulator(modulator_data& m)
{
run_modulator_state ret = MOD_FAILURE;
try {
while (running) {
int framesize;
PDEBUG("*****************************************\n");
PDEBUG("* Starting main loop\n");
PDEBUG("*****************************************\n");
while ((framesize = m.inputReader->GetNextFrame(m.data.getData())) > 0) {
if (!running) {
break;
}
m.framecount++;
PDEBUG("*****************************************\n");
PDEBUG("* Read frame %lu\n", m.framecount);
PDEBUG("*****************************************\n");
////////////////////////////////////////////////////////////////
// Processing data
////////////////////////////////////////////////////////////////
m.flowgraph->run();
/* Check every once in a while if the remote control
* is still working */
if (m.rcs->get_no_controllers() > 0 && (m.framecount % 250) == 0) {
m.rcs->check_faults();
}
}
if (framesize == 0) {
fprintf(stderr, "End of file reached.\n");
}
else {
fprintf(stderr, "Input read error.\n");
}
running = 0;
ret = MOD_NORMAL_END;
}
} catch (std::overflow_error& e) {
// The ZeroMQ input has overflowed its buffer
fprintf(stderr, "overflow error: %s\n", e.what());
ret = MOD_AGAIN;
} catch (std::exception& e) {
fprintf(stderr, "EXCEPTION: %s\n", e.what());
ret = MOD_FAILURE;
}
return ret;
}