/*
Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
Her Majesty the Queen in Right of Canada (Communications Research
Center Canada)
Copyright (C) 2019
Matthias P. Braendli, matthias.braendli@mpb.li
http://opendigitalradio.org
*/
/*
This file is part of ODR-DabMod.
ODR-DabMod is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.
ODR-DabMod is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with ODR-DabMod. If not, see .
*/
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#if HAVE_NETINET_IN_H
# include
#endif
#include "Utils.h"
#include "Log.h"
#include "DabModulator.h"
#include "InputMemory.h"
#include "OutputFile.h"
#include "FormatConverter.h"
#include "FrameMultiplexer.h"
#include "output/SDR.h"
#include "output/UHD.h"
#include "output/Soapy.h"
#include "OutputZeroMQ.h"
#include "InputReader.h"
#include "PcDebug.h"
#include "TimestampDecoder.h"
#include "FIRFilter.h"
#include "RemoteControl.h"
#include "ConfigParser.h"
/* UHD requires the input I and Q samples to be in the interval
* [-1.0,1.0], otherwise they get truncated, which creates very
* wide-spectrum spikes. Depending on the Transmission Mode, the
* Gain Mode and the sample rate (and maybe other parameters), the
* samples can have peaks up to about 48000. The value of 50000
* should guarantee that with a digital gain of 1.0, UHD never clips
* our samples.
*/
static const float normalise_factor = 50000.0f;
//Empirical normalisation factors used to normalise the samples to amplitude 1.
static const float normalise_factor_file_fix = 81000.0f;
static const float normalise_factor_file_var = 46000.0f;
static const float normalise_factor_file_max = 46000.0f;
typedef std::complex complexf;
using namespace std;
volatile sig_atomic_t running = 1;
void signalHandler(int signalNb)
{
PDEBUG("signalHandler(%i)\n", signalNb);
running = 0;
}
struct modulator_data
{
std::shared_ptr inputReader;
Buffer data;
uint64_t framecount = 0;
Flowgraph* flowgraph = nullptr;
EtiReader* etiReader = nullptr;
};
enum class run_modulator_state_t {
failure, // Corresponds to all failures
normal_end, // Number of frames to modulate was reached
again, // Restart the modulator part
reconfigure // Some sort of change of configuration we cannot handle happened
};
static run_modulator_state_t run_modulator(modulator_data& m);
static void printModSettings(const mod_settings_t& mod_settings)
{
stringstream ss;
// Print settings
ss << "Input\n";
ss << " Type: " << mod_settings.inputTransport << "\n";
ss << " Source: " << mod_settings.inputName << "\n";
ss << "Output\n";
if (mod_settings.useFileOutput) {
ss << " Name: " << mod_settings.outputName << "\n";
}
#if defined(HAVE_OUTPUT_UHD)
else if (mod_settings.useUHDOutput) {
ss << " UHD\n" <<
" Device: " << mod_settings.sdr_device_config.device << "\n" <<
" Subdevice: " <<
mod_settings.sdr_device_config.subDevice << "\n" <<
" master_clock_rate: " <<
mod_settings.sdr_device_config.masterClockRate << "\n" <<
" refclk: " <<
mod_settings.sdr_device_config.refclk_src << "\n" <<
" pps source: " <<
mod_settings.sdr_device_config.pps_src << "\n";
}
#endif
#if defined(HAVE_SOAPYSDR)
else if (mod_settings.useSoapyOutput) {
ss << " SoapySDR\n"
" Device: " << mod_settings.sdr_device_config.device << "\n" <<
" master_clock_rate: " <<
mod_settings.sdr_device_config.masterClockRate << "\n";
}
#endif
else if (mod_settings.useZeroMQOutput) {
ss << " ZeroMQ\n" <<
" Listening on: " << mod_settings.outputName << "\n" <<
" Socket type : " << mod_settings.zmqOutputSocketType << "\n";
}
ss << " Sampling rate: ";
if (mod_settings.outputRate > 1000) {
if (mod_settings.outputRate > 1000000) {
ss << std::fixed << std::setprecision(4) <<
mod_settings.outputRate / 1000000.0 <<
" MHz\n";
}
else {
ss << std::fixed << std::setprecision(4) <<
mod_settings.outputRate / 1000.0 <<
" kHz\n";
}
}
else {
ss << std::fixed << std::setprecision(4) <<
mod_settings.outputRate << " Hz\n";
}
fprintf(stderr, "%s", ss.str().c_str());
}
static shared_ptr prepare_output(
mod_settings_t& s)
{
shared_ptr output;
if (s.useFileOutput) {
if (s.fileOutputFormat == "complexf") {
output = make_shared(s.outputName, s.fileOutputShowMetadata);
}
else if (s.fileOutputFormat == "complexf_normalised") {
if (s.gainMode == GainMode::GAIN_FIX)
s.normalise = 1.0f / normalise_factor_file_fix;
else if (s.gainMode == GainMode::GAIN_MAX)
s.normalise = 1.0f / normalise_factor_file_max;
else if (s.gainMode == GainMode::GAIN_VAR)
s.normalise = 1.0f / normalise_factor_file_var;
output = make_shared(s.outputName, s.fileOutputShowMetadata);
}
else if (s.fileOutputFormat == "s16") {
// We must normalise the samples to the interval [-32767.0; 32767.0]
s.normalise = 32767.0f / normalise_factor;
output = make_shared(s.outputName, s.fileOutputShowMetadata);
}
else if (s.fileOutputFormat == "s8" or
s.fileOutputFormat == "u8") {
// We must normalise the samples to the interval [-127.0; 127.0]
// The formatconverter will add 127 for u8 so that it ends up in
// [0; 255]
s.normalise = 127.0f / normalise_factor;
output = make_shared(s.outputName, s.fileOutputShowMetadata);
}
else {
throw runtime_error("File output format " + s.fileOutputFormat +
" not known");
}
}
#if defined(HAVE_OUTPUT_UHD)
else if (s.useUHDOutput) {
s.normalise = 1.0f / normalise_factor;
s.sdr_device_config.sampleRate = s.outputRate;
auto uhddevice = make_shared(s.sdr_device_config);
output = make_shared(s.sdr_device_config, uhddevice);
rcs.enrol((Output::SDR*)output.get());
}
#endif
#if defined(HAVE_SOAPYSDR)
else if (s.useSoapyOutput) {
/* We normalise the same way as for the UHD output */
s.normalise = 1.0f / normalise_factor;
s.sdr_device_config.sampleRate = s.outputRate;
auto soapydevice = make_shared(s.sdr_device_config);
output = make_shared(s.sdr_device_config, soapydevice);
rcs.enrol((Output::SDR*)output.get());
}
#endif
#if defined(HAVE_ZEROMQ)
else if (s.useZeroMQOutput) {
/* We normalise the same way as for the UHD output */
s.normalise = 1.0f / normalise_factor;
if (s.zmqOutputSocketType == "pub") {
output = make_shared(s.outputName, ZMQ_PUB);
}
else if (s.zmqOutputSocketType == "rep") {
output = make_shared(s.outputName, ZMQ_REP);
}
else {
std::stringstream ss;
ss << "ZeroMQ output socket type " << s.zmqOutputSocketType << " invalid";
throw std::invalid_argument(ss.str());
}
}
#endif
return output;
}
int launch_modulator(int argc, char* argv[])
{
int ret = 0;
struct sigaction sa;
memset(&sa, 0, sizeof(struct sigaction));
sa.sa_handler = &signalHandler;
if (sigaction(SIGINT, &sa, NULL) == -1) {
const string errstr = strerror(errno);
throw runtime_error("Could not set signal handler: " + errstr);
}
printStartupInfo();
mod_settings_t mod_settings;
parse_args(argc, argv, mod_settings);
etiLog.level(info) << "Configuration parsed. Starting up version " <<
#if defined(GITVERSION)
GITVERSION;
#else
VERSION;
#endif
if (not (mod_settings.useFileOutput or
mod_settings.useUHDOutput or
mod_settings.useZeroMQOutput or
mod_settings.useSoapyOutput)) {
throw std::runtime_error("Configuration error: Output not specified");
}
printModSettings(mod_settings);
shared_ptr format_converter;
if (mod_settings.useFileOutput and
(mod_settings.fileOutputFormat == "s8" or
mod_settings.fileOutputFormat == "u8" or
mod_settings.fileOutputFormat == "s16")) {
format_converter = make_shared(mod_settings.fileOutputFormat);
}
auto output = prepare_output(mod_settings);
// Set thread priority to realtime
if (int r = set_realtime_prio(1)) {
etiLog.level(error) << "Could not set priority for modulator:" << r;
}
if (mod_settings.inputTransport == "edi") {
#ifdef HAVE_EDI
EdiReader ediReader(mod_settings.tist_offset_s);
EdiDecoder::ETIDecoder ediInput(ediReader, false);
if (mod_settings.edi_max_delay_ms > 0.0f) {
// setMaxDelay wants number of AF packets, which correspond to 24ms ETI frames
ediInput.setMaxDelay(lroundf(mod_settings.edi_max_delay_ms / 24.0f));
}
EdiTransport ediTransport(ediInput);
ediTransport.Open(mod_settings.inputName);
if (not ediTransport.isEnabled()) {
throw runtime_error("inputTransport is edi, but ediTransport is not enabled");
}
Flowgraph flowgraph;
auto modulator = make_shared(ediReader, mod_settings);
rcs.enrol(modulator.get());
if (format_converter) {
flowgraph.connect(modulator, format_converter);
flowgraph.connect(format_converter, output);
}
else {
flowgraph.connect(modulator, output);
}
size_t framecount = 0;
bool first_frame = true;
auto frame_received_tp = chrono::steady_clock::now();
while (running) {
while (running and not ediReader.isFrameReady()) {
try {
bool packet_received = ediTransport.rxPacket();
if (packet_received) {
frame_received_tp = chrono::steady_clock::now();
}
}
catch (const std::runtime_error& e) {
etiLog.level(warn) << "EDI input: " << e.what();
running = 0;
break;
}
if (frame_received_tp + chrono::seconds(10) < chrono::steady_clock::now()) {
etiLog.level(error) << "No EDI data received in 10 seconds.";
running = 0;
break;
}
}
if (not running) {
break;
}
if (first_frame) {
if (ediReader.getFp() != 0) {
// Do not start the flowgraph before we get to FP 0
// to ensure all blocks are properly aligned.
ediReader.clearFrame();
continue;
}
else {
first_frame = false;
}
}
framecount++;
flowgraph.run();
ediReader.clearFrame();
/* Check every once in a while if the remote control
* is still working */
if ((framecount % 250) == 0) {
rcs.check_faults();
}
}
#else
throw std::runtime_error("Unable to open input: "
"EDI input transport selected, but not compiled in!");
#endif // HAVE_EDI
}
else {
shared_ptr inputReader;
if (mod_settings.inputTransport == "file") {
auto inputFileReader = make_shared();
// Opening ETI input file
if (inputFileReader->Open(mod_settings.inputName, mod_settings.loop) == -1) {
throw std::runtime_error("Unable to open input");
}
inputReader = inputFileReader;
}
else if (mod_settings.inputTransport == "zeromq") {
#if !defined(HAVE_ZEROMQ)
throw std::runtime_error("Unable to open input: "
"ZeroMQ input transport selected, but not compiled in!");
#else
auto inputZeroMQReader = make_shared();
inputZeroMQReader->Open(mod_settings.inputName, mod_settings.inputMaxFramesQueued);
rcs.enrol(inputZeroMQReader.get());
inputReader = inputZeroMQReader;
#endif
}
else if (mod_settings.inputTransport == "tcp") {
auto inputTcpReader = make_shared();
inputTcpReader->Open(mod_settings.inputName);
inputReader = inputTcpReader;
}
else {
throw std::runtime_error("Unable to open input: "
"invalid input transport " + mod_settings.inputTransport + " selected!");
}
bool run_again = true;
while (run_again) {
Flowgraph flowgraph;
modulator_data m;
m.inputReader = inputReader;
m.flowgraph = &flowgraph;
m.data.setLength(6144);
EtiReader etiReader(mod_settings.tist_offset_s);
m.etiReader = &etiReader;
auto input = make_shared(&m.data);
auto modulator = make_shared(etiReader, mod_settings);
rcs.enrol(modulator.get());
if (format_converter) {
flowgraph.connect(modulator, format_converter);
flowgraph.connect(format_converter, output);
}
else {
flowgraph.connect(modulator, output);
}
etiLog.level(info) << inputReader->GetPrintableInfo();
run_modulator_state_t st = run_modulator(m);
etiLog.log(trace, "DABMOD,run_modulator() = %d", st);
switch (st) {
case run_modulator_state_t::failure:
etiLog.level(error) << "Modulator failure.";
run_again = false;
ret = 1;
break;
case run_modulator_state_t::again:
etiLog.level(warn) << "Restart modulator.";
run_again = false;
if (auto in = dynamic_pointer_cast(inputReader)) {
if (in->Open(mod_settings.inputName, mod_settings.loop) == -1) {
etiLog.level(error) << "Unable to open input file!";
ret = 1;
}
else {
run_again = true;
}
}
#if defined(HAVE_ZEROMQ)
else if (auto in_zmq = dynamic_pointer_cast(inputReader)) {
run_again = true;
// Create a new input reader
rcs.remove_controllable(in_zmq.get());
auto inputZeroMQReader = make_shared();
inputZeroMQReader->Open(mod_settings.inputName, mod_settings.inputMaxFramesQueued);
rcs.enrol(inputZeroMQReader.get());
inputReader = inputZeroMQReader;
}
#endif
else if (dynamic_pointer_cast(inputReader)) {
// Keep the same inputReader, as there is no input buffer overflow
run_again = true;
}
break;
case run_modulator_state_t::reconfigure:
etiLog.level(warn) << "Detected change in ensemble configuration.";
/* We can keep the input in this care */
run_again = true;
break;
case run_modulator_state_t::normal_end:
default:
etiLog.level(info) << "modulator stopped.";
ret = 0;
run_again = false;
break;
}
etiLog.level(info) << m.framecount << " DAB frames encoded";
etiLog.level(info) << ((float)m.framecount * 0.024f) << " seconds encoded";
}
}
etiLog.level(info) << "Terminating";
return ret;
}
struct zmq_input_timeout : public std::exception
{
const char* what() const throw()
{
return "InputZMQ timeout";
}
};
static run_modulator_state_t run_modulator(modulator_data& m)
{
auto ret = run_modulator_state_t::failure;
try {
bool first_frame = true;
int last_eti_fct = -1;
auto last_frame_received = chrono::steady_clock::now();
while (running) {
int framesize;
PDEBUG("*****************************************\n");
PDEBUG("* Starting main loop\n");
PDEBUG("*****************************************\n");
while ((framesize = m.inputReader->GetNextFrame(m.data.getData())) > 0) {
if (!running) {
break;
}
last_frame_received = chrono::steady_clock::now();
m.framecount++;
PDEBUG("*****************************************\n");
PDEBUG("* Read frame %lu\n", m.framecount);
PDEBUG("*****************************************\n");
const int eti_bytes_read = m.etiReader->loadEtiData(m.data);
if ((size_t)eti_bytes_read != m.data.getLength()) {
etiLog.level(error) << "ETI frame incompletely read";
throw std::runtime_error("ETI read error");
}
if (first_frame) {
if (m.etiReader->getFp() != 0) {
// Do not start the flowgraph before we get to FP 0
// to ensure all blocks are properly aligned.
continue;
}
else {
first_frame = false;
}
}
// Check for ETI FCT continuity
const unsigned expected_fct = (last_eti_fct + 1) % 250;
const unsigned fct = m.etiReader->getFct();
if (last_eti_fct != -1 and expected_fct != fct) {
etiLog.level(info) << "ETI FCT discontinuity, expected " <<
expected_fct << " received " << m.etiReader->getFct();
return run_modulator_state_t::again;
}
last_eti_fct = fct;
m.flowgraph->run();
/* Check every once in a while if the remote control
* is still working */
if ((m.framecount % 250) == 0) {
rcs.check_faults();
}
}
if (framesize == 0) {
if (dynamic_pointer_cast(m.inputReader)) {
etiLog.level(info) << "End of file reached.";
running = 0;
ret = run_modulator_state_t::normal_end;
}
#if defined(HAVE_ZEROMQ)
else if (dynamic_pointer_cast(m.inputReader)) {
/* An empty frame marks a timeout. We ignore it, but we are
* now able to handle SIGINT properly.
*
* Also, we reconnect zmq every 10 seconds to avoid some
* issues, discussed in
* https://stackoverflow.com/questions/26112992/zeromq-pub-sub-on-unreliable-connection
*
* > It is possible that the PUB socket sees the error
* > while the SUB socket does not.
* >
* > The ZMTP RFC has a proposal for heartbeating that would
* > solve this problem. The current best solution is for
* > PUB sockets to send heartbeats (e.g. 1 per second) when
* > traffic is low, and for SUB sockets to disconnect /
* > reconnect if they stop getting these.
*
* We don't need a heartbeat, because our application is constant frame rate,
* the frames themselves can act as heartbeats.
*/
const auto now = chrono::steady_clock::now();
if (last_frame_received + chrono::seconds(10) < now) {
throw zmq_input_timeout();
}
}
#endif // defined(HAVE_ZEROMQ)
else if (dynamic_pointer_cast(m.inputReader)) {
/* Same as for ZeroMQ */
}
else {
throw logic_error("Unhandled framesize==0!");
}
}
else {
etiLog.level(error) << "Input read error.";
running = 0;
ret = run_modulator_state_t::normal_end;
}
}
}
catch (const zmq_input_timeout&) {
// The ZeroMQ input timeout
etiLog.level(warn) << "Timeout";
ret = run_modulator_state_t::again;
}
catch (const zmq_input_overflow& e) {
// The ZeroMQ input has overflowed its buffer
etiLog.level(warn) << e.what();
ret = run_modulator_state_t::again;
}
catch (const FrameMultiplexerError& e) {
// The FrameMultiplexer saw an error or a change in the size of a
// subchannel. This can be due to a multiplex reconfiguration.
etiLog.level(warn) << e.what();
ret = run_modulator_state_t::reconfigure;
}
catch (const std::exception& e) {
etiLog.level(error) << "Exception caught: " << e.what();
ret = run_modulator_state_t::failure;
}
return ret;
}
int main(int argc, char* argv[])
{
// Set timezone to UTC
setenv("TZ", "", 1);
tzset();
try {
return launch_modulator(argc, argv);
}
catch (const std::invalid_argument& e) {
std::string what(e.what());
if (not what.empty()) {
std::cerr << "Modulator error: " << what << std::endl;
}
}
catch (const std::runtime_error& e) {
std::cerr << "Modulator runtime error: " << e.what() << std::endl;
}
return 1;
}