#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # DPD Computation Engine standalone main file. # # http://www.opendigitalradio.org # Licence: The MIT License, see notice at the end of this file """This Python script is the main file for ODR-DabMod's DPD Computation Engine running in server mode. This engine calculates and updates the parameter of the digital predistortion module of ODR-DabMod.""" import sys import os import argparse import configparser import matplotlib matplotlib.use('Agg') parser = argparse.ArgumentParser( description="DPD Computation Engine for ODR-DabMod") parser.add_argument('--config', default="gui-dpdce.ini", type=str, help='Location of configuration filename (default: gui-dpdce.ini)', required=False) parser.add_argument('-s', '--status', action="store_true", help='Display the currently running DPD settings.') parser.add_argument('-r', '--reset', action="store_true", help='Reset the DPD settings to the defaults, and set digital gain to 0.01') cli_args = parser.parse_args() allconfig = configparser.ConfigParser() allconfig.read(cli_args.config) config = allconfig['dpdce'] # removed options: # txgain, rxgain, digital_gain, target_median, iterations, lut, enable-txgain-agc, plot, measure control_port = config.getint('control_port') dpd_port = config.getint('dpd_port') rc_port = config.getint('rc_port') samplerate = config.getint('samplerate') samps = config.getint('samps') coef_file = config['coef_file'] logs_directory = config['logs_directory'] plot_directory = config['plot_directory'] import logging import datetime save_logs = False # Simple usage scenarios don't need to clutter /tmp if save_logs: dt = datetime.datetime.utcnow().isoformat() logging_path = '/tmp/dpd_{}'.format(dt).replace('.', '_').replace(':', '-') print("Logs and plots written to {}".format(logging_path)) os.makedirs(logging_path) logging.basicConfig(format='%(asctime)s - %(module)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename='{}/dpd.log'.format(logging_path), filemode='w', level=logging.DEBUG) # also log up to INFO to console console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('%(asctime)s - %(module)s - %(levelname)s - %(message)s') # tell the handler to use this format console.setFormatter(formatter) # add the handler to the root logger logging.getLogger('').addHandler(console) else: dt = datetime.datetime.utcnow().isoformat() logging.basicConfig(format='%(asctime)s - %(module)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.INFO) logging_path = "" logging.info("DPDCE starting up"); import time import socket from lib import yamlrpc import numpy as np import traceback import os.path import glob from threading import Thread, Lock from queue import Queue from dpd.Model import Poly import dpd.Heuristics as Heuristics from dpd.Measure import Measure from dpd.ExtractStatistic import ExtractStatistic from dpd.Adapt import Adapt, dpddata_to_str from dpd.RX_Agc import Agc from dpd.Symbol_align import Symbol_align from dpd.GlobalConfig import GlobalConfig from dpd.MER import MER from dpd.Measure_Shoulders import Measure_Shoulders plot_path = os.path.realpath(plot_directory) coef_file = os.path.realpath(config['coef_file']) c = GlobalConfig(samplerate, plot_path) symbol_align = Symbol_align(c) mer = MER(c) meas_shoulders = Measure_Shoulders(c) meas = Measure(c, samplerate, dpd_port, samps) adapt = Adapt(rc_port, coef_file, plot_path) model = Poly(c) # Do not touch settings on startup tx_gain = adapt.get_txgain() rx_gain = adapt.get_rxgain() digital_gain = adapt.get_digital_gain() dpddata = adapt.get_predistorter() logging.info("ODR-DabMod currently running with TXGain {}, RXGain {}, digital gain {} and {}".format( tx_gain, rx_gain, digital_gain, dpddata_to_str(dpddata))) if cli_args.status: sys.exit(0) if cli_args.reset: adapt.set_digital_gain(0.01) adapt.set_rxgain(0) adapt.set_predistorter(model.get_dpd_data()) logging.info("DPD Settings were reset to default values.") sys.exit(0) cmd_socket = yamlrpc.Socket(bind_port=control_port) # The following is accessed by both threads and need to be locked settings = { 'rx_gain': rx_gain, 'tx_gain': tx_gain, 'digital_gain': digital_gain, 'dpddata': dpddata, } internal_data = { 'n_runs': 0, } results = { 'statplot': None, 'modelplot': None, 'modeldata': "", 'tx_median': 0, 'rx_median': 0, 'state': 'Idle', 'stateprogress': 0, # in percent 'summary': ['DPD has not been calibrated yet'], } lock = Lock() command_queue = Queue(maxsize=1) # Automatic Gain Control for the RX gain agc = Agc(meas, adapt, c) def clear_pngs(results): results['statplot'] = None results['modelplot'] = None pngs = glob.glob(os.path.join(plot_path, "*.png")) for png in pngs: try: os.remove(png) except: results['summary'] += ["failed to delete " + png] def engine_worker(): extStat = None try: while True: cmd = command_queue.get() if cmd == "quit": break elif cmd == "calibrate": with lock: results['state'] = 'RX Gain Calibration' results['stateprogress'] = 0 clear_pngs(results) summary = [] N_ITER = 5 for i in range(N_ITER): agc_success, agc_summary = agc.run() summary += ["Iteration {}:".format(i)] + agc_summary.split("\n") with lock: results['stateprogress'] = int((i + 1) * 100/N_ITER) results['summary'] = ["Calibration ongoing:"] + summary if not agc_success: break txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = meas.get_samples() with lock: settings['rx_gain'] = adapt.get_rxgain() settings['digital_gain'] = adapt.get_digital_gain() results['tx_median'] = float(tx_median) results['rx_median'] = float(rx_median) results['state'] = 'Idle' results['stateprogress'] = 100 results['summary'] = summary + ["Calibration done"] elif cmd == "reset": model.reset_coefs() with lock: internal_data['n_runs'] = 0 results['state'] = 'Idle' results['stateprogress'] = 0 results['summary'] = ["Reset"] results['modeldata'] = repr(model.get_dpd_data()) clear_pngs(results) extStat = None elif cmd == "trigger_run": with lock: results['state'] = 'Capture + Model' results['stateprogress'] = 0 n_runs = internal_data['n_runs'] while True: # Get Samples and check gain txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = meas.get_samples() if extStat is None: # At first run, we must decide how to create the bins peak_estimated = tx_median * c.median_to_peak extStat = ExtractStatistic(c, peak_estimated) with lock: results['stateprogress'] += 5 results['summary'] = ["Captured {} samples".format(len(txframe_aligned)), "TX/RX median: {} / {}".format(tx_median, rx_median), extStat.get_bin_info()] # Extract usable data from measurement tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned) utctime = datetime.datetime.utcnow() plot_file = "stats_{}.png".format(utctime.strftime("%s")) extStat.plot(os.path.join(plot_path, plot_file), utctime.strftime("%Y-%m-%dT%H%M%S")) n_meas = Heuristics.get_n_meas(n_runs) with lock: results['statplot'] = "dpd/" + plot_file results['stateprogress'] += 5 results['summary'] += ["Extracted Statistics: TX median={} RX median={}".format(tx_median, rx_median), "Runs: {}/{}".format(extStat.n_meas, n_meas)] if extStat.n_meas >= n_meas: break if any(x is None for x in [tx, rx, phase_diff]): with lock: results['summary'] += ["Error! No data to calculate model"] results['state'] = 'Idle' results['stateprogress'] = 0 else: with lock: results['state'] = 'Capture + Model' results['stateprogress'] = 80 results['summary'] += ["Training model"] model.train(tx, rx, phase_diff, lr=Heuristics.get_learning_rate(n_runs)) utctime = datetime.datetime.utcnow() model_plot_file = "model_{}.png".format(utctime.strftime("%s")) model.plot( os.path.join(plot_path, model_plot_file), utctime.strftime("%Y-%m-%dT%H%M%S")) with lock: results['modelplot'] = "dpd/" + model_plot_file results['state'] = 'Capture + Model' results['stateprogress'] = 85 results['summary'] += ["Getting DPD data"] dpddata = model.get_dpd_data() with lock: internal_data['dpddata'] = dpddata internal_data['n_runs'] = 0 results['modeldata'] = repr(dpddata) results['state'] = 'Capture + Model' results['stateprogress'] = 90 results['summary'] += ["Reset statistics"] extStat = None with lock: results['state'] = 'Idle' results['stateprogress'] = 100 results['summary'] += ["New DPD coefficients calculated"] elif cmd == "adapt": with lock: dpddata = internal_data['dpddata'] results['state'] = 'Update Predistorter' results['stateprogress'] = 50 results['summary'] = [""] iteration = internal_data['n_runs'] internal_data['n_runs'] += 1 answer = adapt.set_predistorter(dpddata) time.sleep(2) txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = meas.get_samples() # Store all settings for pre-distortion, tx and rx adapt.dump() # Collect logging data off = symbol_align.calc_offset(txframe_aligned) tx_mer = mer.calc_mer(txframe_aligned[off:off + c.T_U], debug_name='TX') rx_mer = mer.calc_mer(rxframe_aligned[off:off + c.T_U], debug_name='RX') mse = np.mean(np.abs((txframe_aligned - rxframe_aligned) ** 2)) tx_gain = adapt.get_txgain() rx_gain = adapt.get_rxgain() digital_gain = adapt.get_digital_gain() rx_shoulder_tuple = meas_shoulders.average_shoulders(rxframe_aligned) tx_shoulder_tuple = meas_shoulders.average_shoulders(txframe_aligned) lr = Heuristics.get_learning_rate(iteration) summary = [f"Set predistorter: {answer}", f"Signal measurements after iteration {iteration} with learning rate {lr}", f"TX MER {tx_mer}, RX MER {rx_mer}", "Shoulders: TX {!r}, RX {!r}".format(tx_shoulder_tuple, rx_shoulder_tuple), f"Mean-square error: {mse}", f"Running with digital gain {digital_gain}, TX gain {tx_gain} and RX gain {rx_gain}"] with lock: results['state'] = 'Update Predistorter' results['stateprogress'] = 100 results['summary'] = ["Signal measurements after predistortion update"] + summary finally: with lock: results['state'] = 'Terminated' results['stateprogress'] = 0 engine = Thread(target=engine_worker) engine.start() try: while True: try: addr, msg_id, method, params = cmd_socket.receive_request() except ValueError as e: logging.warning('YAML-RPC request error: {}'.format(e)) continue except TimeoutError: continue except KeyboardInterrupt: logging.info('Caught KeyboardInterrupt') break except: logging.error('YAML-RPC unknown error') break if any(method == m for m in ['trigger_run', 'reset', 'adapt']): logging.info('YAML-RPC request : {}'.format(method)) command_queue.put(method) cmd_socket.send_success_response(addr, msg_id, None) elif method == 'set_setting': logging.info('YAML-RPC request : {} -> {}'.format(method, params)) # params == {'setting': ..., 'value': ...} cmd_socket.send_success_response(addr, msg_id, None) elif method == 'get_settings': with lock: cmd_socket.send_success_response(addr, msg_id, settings) elif method == 'get_results': with lock: cmd_socket.send_success_response(addr, msg_id, results) elif method == 'calibrate': logging.info('YAML-RPC request : {}'.format(method)) command_queue.put('calibrate') cmd_socket.send_success_response(addr, msg_id, None) else: cmd_socket.send_error_response(addr, msg_id, "request not understood") finally: command_queue.put('quit') logging.info('Waiting for DPDCE to stop') engine.join() # Make code below unreachable sys.exit(0) def measure_once(): txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = meas.get_samples() print("TX signal median {}".format(np.median(np.abs(txframe_aligned)))) print("RX signal median {}".format(rx_median)) tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned) off = symbol_align.calc_offset(txframe_aligned) print("off {}".format(off)) tx_mer = mer.calc_mer(txframe_aligned[off:off + c.T_U], debug_name='TX') print("tx_mer {}".format(tx_mer)) rx_mer = mer.calc_mer(rxframe_aligned[off:off + c.T_U], debug_name='RX') print("rx_mer {}".format(rx_mer)) mse = np.mean(np.abs((txframe_aligned - rxframe_aligned) ** 2)) print("mse {}".format(mse)) digital_gain = adapt.get_digital_gain() print("digital_gain {}".format(digital_gain)) #rx_shoulder_tuple = meas_shoulders.average_shoulders(rxframe_aligned) #tx_shoulder_tuple = meas_shoulders.average_shoulders(txframe_aligned) state = 'report' i = 0 n_meas = None num_iter = 10 while i < num_iter: try: # Measure if state == 'measure': # Get Samples and check gain txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = meas.get_samples() # TODO Check TX median # Extract usable data from measurement tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned) n_meas = Heuristics.get_n_meas(i) if extStat.n_meas >= n_meas: # Use as many measurements nr of runs state = 'model' else: state = 'measure' # Model elif state == 'model': # Calculate new model parameters and delete old measurements if any(x is None for x in [tx, rx, phase_diff]): logging.error("No data to calculate model") state = 'measure' continue model.train(tx, rx, phase_diff, lr=Heuristics.get_learning_rate(i)) dpddata = model.get_dpd_data() extStat = ExtractStatistic(c) state = 'adapt' # Adapt elif state == 'adapt': adapt.set_predistorter(dpddata) state = 'report' # Report elif state == 'report': try: txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = meas.get_samples() # Store all settings for pre-distortion, tx and rx adapt.dump() # Collect logging data off = symbol_align.calc_offset(txframe_aligned) tx_mer = mer.calc_mer(txframe_aligned[off:off + c.T_U], debug_name='TX') rx_mer = mer.calc_mer(rxframe_aligned[off:off + c.T_U], debug_name='RX') mse = np.mean(np.abs((txframe_aligned - rxframe_aligned) ** 2)) tx_gain = adapt.get_txgain() rx_gain = adapt.get_rxgain() digital_gain = adapt.get_digital_gain() tx_median = np.median(np.abs(txframe_aligned)) rx_shoulder_tuple = meas_shoulders.average_shoulders(rxframe_aligned) tx_shoulder_tuple = meas_shoulders.average_shoulders(txframe_aligned) lr = Heuristics.get_learning_rate(i) # Generic logging logging.info(list((name, eval(name)) for name in ['i', 'tx_mer', 'tx_shoulder_tuple', 'rx_mer', 'rx_shoulder_tuple', 'mse', 'tx_gain', 'digital_gain', 'rx_gain', 'rx_median', 'tx_median', 'lr', 'n_meas'])) # Model specific logging if dpddata[0] == 'poly': coefs_am = dpddata[1] coefs_pm = dpddata[2] logging.info('It {}: coefs_am {}'. format(i, coefs_am)) logging.info('It {}: coefs_pm {}'. format(i, coefs_pm)) elif dpddata[0] == 'lut': scalefactor = dpddata[1] lut = dpddata[2] logging.info('It {}: LUT scalefactor {}, LUT {}'. format(i, scalefactor, lut)) except: logging.error('Iteration {}: Report failed.'.format(i)) logging.error(traceback.format_exc()) i += 1 state = 'measure' except: logging.error('Iteration {} failed.'.format(i)) logging.error(traceback.format_exc()) i += 1 state = 'measure' # The MIT License (MIT) # # Copyright (c) 2017 Andreas Steger # Copyright (c) 2018 Matthias P. Braendli # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.