/* Copyright (C) 2017 Matthias P. Braendli, matthias.braendli@mpb.li http://opendigitalradio.org This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. */ #pragma once #include <stdint.h> #include <deque> #include <string> #include <vector> #include "PFT.hpp" #include "eti.hpp" namespace EdiDecoder { // Information for Frame Characterisation available in // EDI. // // Number of streams is given separately, and frame length // is calculated in the DataCollector struct eti_fc_data { bool atstf; uint32_t tsta; bool ficf; uint16_t dflc; uint8_t mid; uint8_t fp; uint8_t fct(void) const { return dflc % 250; } }; // Information for a subchannel available in EDI struct eti_stc_data { uint8_t stream_index; uint8_t scid; uint16_t sad; uint8_t tpl; std::vector<uint8_t> mst; // Return the length of the MST in multiples of 64 bits uint16_t stl(void) const { return mst.size() / 8; } }; /* A class that receives multiplex data must implement the interface described * in the DataCollector. This can be e.g. a converter to ETI, or something that * prepares data structures for a modulator. */ class DataCollector { public: // Tell the ETIWriter what EDI protocol we receive in *ptr. // This is not part of the ETI data, but is used as check virtual void update_protocol( const std::string& proto, uint16_t major, uint16_t minor) = 0; // Update the data for the frame characterisation virtual void update_fc_data(const eti_fc_data& fc_data) = 0; virtual void update_fic(const std::vector<uint8_t>& fic) = 0; virtual void update_err(uint8_t err) = 0; // In addition to TSTA in ETI, EDI also transports more time // stamp information. virtual void update_edi_time( uint32_t utco, uint32_t seconds) = 0; virtual void update_mnsc(uint16_t mnsc) = 0; virtual void update_rfu(uint16_t rfu) = 0; virtual void add_subchannel(const eti_stc_data& stc) = 0; // Tell the ETIWriter that the AFPacket is complete virtual void assemble(void) = 0; }; /* The ETIDecoder takes care of decoding the EDI TAGs related to the transport * of ETI(NI) data inside AF and PF packets. * * PF packets are handed over to the PFT decoder, which will in turn return * AF packets. AF packets are directly handled (TAG extraction) here. */ class ETIDecoder { public: ETIDecoder(DataCollector& data_collector, bool verbose); /* Push bytes into the decoder. The buf can contain more * than a single packet. This is useful when reading from streams * (files, TCP) */ void push_bytes(const std::vector<uint8_t> &buf); /* Push a complete packet into the decoder. Useful for UDP and other * datagram-oriented protocols. */ void push_packet(const std::vector<uint8_t> &buf); /* Set the maximum delay in number of AF Packets before we * abandon decoding a given pseq. */ void setMaxDelay(int num_af_packets); private: struct decode_state_t { decode_state_t(bool _complete, size_t _num_bytes_consumed) : complete(_complete), num_bytes_consumed(_num_bytes_consumed) {} bool complete; size_t num_bytes_consumed; }; decode_state_t decode_afpacket(const std::vector<uint8_t> &input_data); bool decode_tagpacket(const std::vector<uint8_t> &payload); bool decode_starptr(const std::vector<uint8_t> &value); bool decode_deti(const std::vector<uint8_t> &value); bool decode_estn(const std::vector<uint8_t> &value, uint8_t n); bool decode_stardmy(const std::vector<uint8_t> &value); DataCollector& m_data_collector; PFT::PFT m_pft; uint16_t m_last_seq; std::vector<uint8_t> m_input_data; }; }