// // detail/impl/scheduler.ipp // ~~~~~~~~~~~~~~~~~~~~~~~~~ // // Copyright (c) 2003-2018 Christopher M. Kohlhoff (chris at kohlhoff dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef ASIO_DETAIL_IMPL_SCHEDULER_IPP #define ASIO_DETAIL_IMPL_SCHEDULER_IPP #if defined(_MSC_VER) && (_MSC_VER >= 1200) # pragma once #endif // defined(_MSC_VER) && (_MSC_VER >= 1200) #include "asio/detail/config.hpp" #include "asio/detail/concurrency_hint.hpp" #include "asio/detail/event.hpp" #include "asio/detail/limits.hpp" #include "asio/detail/reactor.hpp" #include "asio/detail/scheduler.hpp" #include "asio/detail/scheduler_thread_info.hpp" #include "asio/detail/push_options.hpp" namespace asio { namespace detail { struct scheduler::task_cleanup { ~task_cleanup() { if (this_thread_->private_outstanding_work > 0) { asio::detail::increment( scheduler_->outstanding_work_, this_thread_->private_outstanding_work); } this_thread_->private_outstanding_work = 0; // Enqueue the completed operations and reinsert the task at the end of // the operation queue. lock_->lock(); scheduler_->task_interrupted_ = true; scheduler_->op_queue_.push(this_thread_->private_op_queue); scheduler_->op_queue_.push(&scheduler_->task_operation_); } scheduler* scheduler_; mutex::scoped_lock* lock_; thread_info* this_thread_; }; struct scheduler::work_cleanup { ~work_cleanup() { if (this_thread_->private_outstanding_work > 1) { asio::detail::increment( scheduler_->outstanding_work_, this_thread_->private_outstanding_work - 1); } else if (this_thread_->private_outstanding_work < 1) { scheduler_->work_finished(); } this_thread_->private_outstanding_work = 0; #if defined(ASIO_HAS_THREADS) if (!this_thread_->private_op_queue.empty()) { lock_->lock(); scheduler_->op_queue_.push(this_thread_->private_op_queue); } #endif // defined(ASIO_HAS_THREADS) } scheduler* scheduler_; mutex::scoped_lock* lock_; thread_info* this_thread_; }; scheduler::scheduler( asio::execution_context& ctx, int concurrency_hint) : asio::detail::execution_context_service_base(ctx), one_thread_(concurrency_hint == 1 || !ASIO_CONCURRENCY_HINT_IS_LOCKING( SCHEDULER, concurrency_hint) || !ASIO_CONCURRENCY_HINT_IS_LOCKING( REACTOR_IO, concurrency_hint)), mutex_(ASIO_CONCURRENCY_HINT_IS_LOCKING( SCHEDULER, concurrency_hint)), task_(0), task_interrupted_(true), outstanding_work_(0), stopped_(false), shutdown_(false), concurrency_hint_(concurrency_hint) { ASIO_HANDLER_TRACKING_INIT; } void scheduler::shutdown() { mutex::scoped_lock lock(mutex_); shutdown_ = true; lock.unlock(); // Destroy handler objects. while (!op_queue_.empty()) { operation* o = op_queue_.front(); op_queue_.pop(); if (o != &task_operation_) o->destroy(); } // Reset to initial state. task_ = 0; } void scheduler::init_task() { mutex::scoped_lock lock(mutex_); if (!shutdown_ && !task_) { task_ = &use_service(this->context()); op_queue_.push(&task_operation_); wake_one_thread_and_unlock(lock); } } std::size_t scheduler::run(asio::error_code& ec) { ec = asio::error_code(); if (outstanding_work_ == 0) { stop(); return 0; } thread_info this_thread; this_thread.private_outstanding_work = 0; thread_call_stack::context ctx(this, this_thread); mutex::scoped_lock lock(mutex_); std::size_t n = 0; for (; do_run_one(lock, this_thread, ec); lock.lock()) if (n != (std::numeric_limits::max)()) ++n; return n; } std::size_t scheduler::run_one(asio::error_code& ec) { ec = asio::error_code(); if (outstanding_work_ == 0) { stop(); return 0; } thread_info this_thread; this_thread.private_outstanding_work = 0; thread_call_stack::context ctx(this, this_thread); mutex::scoped_lock lock(mutex_); return do_run_one(lock, this_thread, ec); } std::size_t scheduler::wait_one(long usec, asio::error_code& ec) { ec = asio::error_code(); if (outstanding_work_ == 0) { stop(); return 0; } thread_info this_thread; this_thread.private_outstanding_work = 0; thread_call_stack::context ctx(this, this_thread); mutex::scoped_lock lock(mutex_); return do_wait_one(lock, this_thread, usec, ec); } std::size_t scheduler::poll(asio::error_code& ec) { ec = asio::error_code(); if (outstanding_work_ == 0) { stop(); return 0; } thread_info this_thread; this_thread.private_outstanding_work = 0; thread_call_stack::context ctx(this, this_thread); mutex::scoped_lock lock(mutex_); #if defined(ASIO_HAS_THREADS) // We want to support nested calls to poll() and poll_one(), so any handlers // that are already on a thread-private queue need to be put on to the main // queue now. if (one_thread_) if (thread_info* outer_info = static_cast(ctx.next_by_key())) op_queue_.push(outer_info->private_op_queue); #endif // defined(ASIO_HAS_THREADS) std::size_t n = 0; for (; do_poll_one(lock, this_thread, ec); lock.lock()) if (n != (std::numeric_limits::max)()) ++n; return n; } std::size_t scheduler::poll_one(asio::error_code& ec) { ec = asio::error_code(); if (outstanding_work_ == 0) { stop(); return 0; } thread_info this_thread; this_thread.private_outstanding_work = 0; thread_call_stack::context ctx(this, this_thread); mutex::scoped_lock lock(mutex_); #if defined(ASIO_HAS_THREADS) // We want to support nested calls to poll() and poll_one(), so any handlers // that are already on a thread-private queue need to be put on to the main // queue now. if (one_thread_) if (thread_info* outer_info = static_cast(ctx.next_by_key())) op_queue_.push(outer_info->private_op_queue); #endif // defined(ASIO_HAS_THREADS) return do_poll_one(lock, this_thread, ec); } void scheduler::stop() { mutex::scoped_lock lock(mutex_); stop_all_threads(lock); } bool scheduler::stopped() const { mutex::scoped_lock lock(mutex_); return stopped_; } void scheduler::restart() { mutex::scoped_lock lock(mutex_); stopped_ = false; } void scheduler::compensating_work_started() { thread_info_base* this_thread = thread_call_stack::contains(this); ++static_cast(this_thread)->private_outstanding_work; } void scheduler::post_immediate_completion( scheduler::operation* op, bool is_continuation) { #if defined(ASIO_HAS_THREADS) if (one_thread_ || is_continuation) { if (thread_info_base* this_thread = thread_call_stack::contains(this)) { ++static_cast(this_thread)->private_outstanding_work; static_cast(this_thread)->private_op_queue.push(op); return; } } #else // defined(ASIO_HAS_THREADS) (void)is_continuation; #endif // defined(ASIO_HAS_THREADS) work_started(); mutex::scoped_lock lock(mutex_); op_queue_.push(op); wake_one_thread_and_unlock(lock); } void scheduler::post_deferred_completion(scheduler::operation* op) { #if defined(ASIO_HAS_THREADS) if (one_thread_) { if (thread_info_base* this_thread = thread_call_stack::contains(this)) { static_cast(this_thread)->private_op_queue.push(op); return; } } #endif // defined(ASIO_HAS_THREADS) mutex::scoped_lock lock(mutex_); op_queue_.push(op); wake_one_thread_and_unlock(lock); } void scheduler::post_deferred_completions( op_queue& ops) { if (!ops.empty()) { #if defined(ASIO_HAS_THREADS) if (one_thread_) { if (thread_info_base* this_thread = thread_call_stack::contains(this)) { static_cast(this_thread)->private_op_queue.push(ops); return; } } #endif // defined(ASIO_HAS_THREADS) mutex::scoped_lock lock(mutex_); op_queue_.push(ops); wake_one_thread_and_unlock(lock); } } void scheduler::do_dispatch( scheduler::operation* op) { work_started(); mutex::scoped_lock lock(mutex_); op_queue_.push(op); wake_one_thread_and_unlock(lock); } void scheduler::abandon_operations( op_queue& ops) { op_queue ops2; ops2.push(ops); } std::size_t scheduler::do_run_one(mutex::scoped_lock& lock, scheduler::thread_info& this_thread, const asio::error_code& ec) { while (!stopped_) { if (!op_queue_.empty()) { // Prepare to execute first handler from queue. operation* o = op_queue_.front(); op_queue_.pop(); bool more_handlers = (!op_queue_.empty()); if (o == &task_operation_) { task_interrupted_ = more_handlers; if (more_handlers && !one_thread_) wakeup_event_.unlock_and_signal_one(lock); else lock.unlock(); task_cleanup on_exit = { this, &lock, &this_thread }; (void)on_exit; // Run the task. May throw an exception. Only block if the operation // queue is empty and we're not polling, otherwise we want to return // as soon as possible. task_->run(more_handlers ? 0 : -1, this_thread.private_op_queue); } else { std::size_t task_result = o->task_result_; if (more_handlers && !one_thread_) wake_one_thread_and_unlock(lock); else lock.unlock(); // Ensure the count of outstanding work is decremented on block exit. work_cleanup on_exit = { this, &lock, &this_thread }; (void)on_exit; // Complete the operation. May throw an exception. Deletes the object. o->complete(this, ec, task_result); return 1; } } else { wakeup_event_.clear(lock); wakeup_event_.wait(lock); } } return 0; } std::size_t scheduler::do_wait_one(mutex::scoped_lock& lock, scheduler::thread_info& this_thread, long usec, const asio::error_code& ec) { if (stopped_) return 0; operation* o = op_queue_.front(); if (o == 0) { wakeup_event_.clear(lock); wakeup_event_.wait_for_usec(lock, usec); usec = 0; // Wait at most once. o = op_queue_.front(); } if (o == &task_operation_) { op_queue_.pop(); bool more_handlers = (!op_queue_.empty()); task_interrupted_ = more_handlers; if (more_handlers && !one_thread_) wakeup_event_.unlock_and_signal_one(lock); else lock.unlock(); { task_cleanup on_exit = { this, &lock, &this_thread }; (void)on_exit; // Run the task. May throw an exception. Only block if the operation // queue is empty and we're not polling, otherwise we want to return // as soon as possible. task_->run(more_handlers ? 0 : usec, this_thread.private_op_queue); } o = op_queue_.front(); if (o == &task_operation_) { if (!one_thread_) wakeup_event_.maybe_unlock_and_signal_one(lock); return 0; } } if (o == 0) return 0; op_queue_.pop(); bool more_handlers = (!op_queue_.empty()); std::size_t task_result = o->task_result_; if (more_handlers && !one_thread_) wake_one_thread_and_unlock(lock); else lock.unlock(); // Ensure the count of outstanding work is decremented on block exit. work_cleanup on_exit = { this, &lock, &this_thread }; (void)on_exit; // Complete the operation. May throw an exception. Deletes the object. o->complete(this, ec, task_result); return 1; } std::size_t scheduler::do_poll_one(mutex::scoped_lock& lock, scheduler::thread_info& this_thread, const asio::error_code& ec) { if (stopped_) return 0; operation* o = op_queue_.front(); if (o == &task_operation_) { op_queue_.pop(); lock.unlock(); { task_cleanup c = { this, &lock, &this_thread }; (void)c; // Run the task. May throw an exception. Only block if the operation // queue is empty and we're not polling, otherwise we want to return // as soon as possible. task_->run(0, this_thread.private_op_queue); } o = op_queue_.front(); if (o == &task_operation_) { wakeup_event_.maybe_unlock_and_signal_one(lock); return 0; } } if (o == 0) return 0; op_queue_.pop(); bool more_handlers = (!op_queue_.empty()); std::size_t task_result = o->task_result_; if (more_handlers && !one_thread_) wake_one_thread_and_unlock(lock); else lock.unlock(); // Ensure the count of outstanding work is decremented on block exit. work_cleanup on_exit = { this, &lock, &this_thread }; (void)on_exit; // Complete the operation. May throw an exception. Deletes the object. o->complete(this, ec, task_result); return 1; } void scheduler::stop_all_threads( mutex::scoped_lock& lock) { stopped_ = true; wakeup_event_.signal_all(lock); if (!task_interrupted_ && task_) { task_interrupted_ = true; task_->interrupt(); } } void scheduler::wake_one_thread_and_unlock( mutex::scoped_lock& lock) { if (!wakeup_event_.maybe_unlock_and_signal_one(lock)) { if (!task_interrupted_ && task_) { task_interrupted_ = true; task_->interrupt(); } lock.unlock(); } } } // namespace detail } // namespace asio #include "asio/detail/pop_options.hpp" #endif // ASIO_DETAIL_IMPL_SCHEDULER_IPP