/*
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Her Majesty the
Queen in Right of Canada (Communications Research Center Canada)
Copyright (C) 2022
Matthias P. Braendli, matthias.braendli@mpb.li
http://www.opendigitalradio.org
*/
/*
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#include "Socket.h"
#include
#include
#include
#include
#include
#include
#include
namespace Socket {
using namespace std;
void InetAddress::resolveUdpDestination(const std::string& destination, int port)
{
char service[NI_MAXSERV];
snprintf(service, NI_MAXSERV-1, "%d", port);
struct addrinfo hints;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = 0;
hints.ai_protocol = 0;
struct addrinfo *result, *rp;
int s = getaddrinfo(destination.c_str(), service, &hints, &result);
if (s != 0) {
throw runtime_error(string("getaddrinfo failed: ") + gai_strerror(s));
}
for (rp = result; rp != nullptr; rp = rp->ai_next) {
// Take the first result
memcpy(&addr, rp->ai_addr, rp->ai_addrlen);
break;
}
freeaddrinfo(result);
if (rp == nullptr) {
throw runtime_error("Could not resolve");
}
}
string InetAddress::to_string() const
{
char received_from_str[64] = {};
sockaddr *addr = reinterpret_cast(&addr);
const char* ret = inet_ntop(AF_INET, addr, received_from_str, 63);
if (ret == nullptr) {
throw invalid_argument(string("Error converting InetAddress") + strerror(errno));
}
return ret;
}
UDPPacket::UDPPacket() { }
UDPPacket::UDPPacket(size_t initSize) :
buffer(initSize),
address()
{ }
UDPSocket::UDPSocket()
{
reinit(0, "");
}
UDPSocket::UDPSocket(int port)
{
reinit(port, "");
}
UDPSocket::UDPSocket(int port, const std::string& name)
{
reinit(port, name);
}
UDPSocket::UDPSocket(UDPSocket&& other)
{
m_sock = other.m_sock;
m_port = other.m_port;
m_multicast_source = other.m_multicast_source;
other.m_port = 0;
other.m_sock = INVALID_SOCKET;
other.m_multicast_source = "";
}
const UDPSocket& UDPSocket::operator=(UDPSocket&& other)
{
m_sock = other.m_sock;
m_port = other.m_port;
m_multicast_source = other.m_multicast_source;
other.m_port = 0;
other.m_sock = INVALID_SOCKET;
other.m_multicast_source = "";
return *this;
}
void UDPSocket::setBlocking(bool block)
{
int res = fcntl(m_sock, F_SETFL, block ? 0 : O_NONBLOCK);
if (res == -1) {
throw runtime_error(string("Can't change blocking state of socket: ") + strerror(errno));
}
}
void UDPSocket::reinit(int port)
{
return reinit(port, "");
}
void UDPSocket::reinit(int port, const std::string& name)
{
if (m_sock != INVALID_SOCKET) {
::close(m_sock);
}
m_port = port;
if (port == 0) {
// No need to bind to a given port, creating the
// socket is enough
m_sock = ::socket(AF_INET, SOCK_DGRAM, 0);
post_init();
return;
}
char service[NI_MAXSERV];
snprintf(service, NI_MAXSERV-1, "%d", port);
struct addrinfo hints;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */
hints.ai_protocol = 0; /* Any protocol */
hints.ai_canonname = nullptr;
hints.ai_addr = nullptr;
hints.ai_next = nullptr;
struct addrinfo *result, *rp;
int s = getaddrinfo(name.empty() ? nullptr : name.c_str(),
port == 0 ? nullptr : service,
&hints, &result);
if (s != 0) {
throw runtime_error(string("getaddrinfo failed: ") + gai_strerror(s));
}
/* getaddrinfo() returns a list of address structures.
Try each address until we successfully bind(2).
If socket(2) (or bind(2)) fails, we (close the socket
and) try the next address. */
for (rp = result; rp != nullptr; rp = rp->ai_next) {
int sfd = ::socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (sfd == -1) {
continue;
}
if (::bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0) {
m_sock = sfd;
post_init();
break;
}
::close(sfd);
}
freeaddrinfo(result);
if (rp == nullptr) {
throw runtime_error(string{"Could not bind to port "} + to_string(port));
}
}
void UDPSocket::post_init() {
int pktinfo = 1;
if (setsockopt(m_sock, IPPROTO_IP, IP_PKTINFO, &pktinfo, sizeof(pktinfo)) == SOCKET_ERROR) {
throw runtime_error(string("Can't request pktinfo: ") + strerror(errno));
}
}
void UDPSocket::init_receive_multicast(int port, const string& local_if_addr, const string& mcastaddr)
{
if (m_sock != INVALID_SOCKET) {
::close(m_sock);
}
m_port = port;
m_sock = ::socket(AF_INET, SOCK_DGRAM, 0);
post_init();
int reuse_setting = 1;
if (setsockopt(m_sock, SOL_SOCKET, SO_REUSEADDR, &reuse_setting, sizeof(reuse_setting)) == SOCKET_ERROR) {
throw runtime_error("Can't reuse address");
}
struct sockaddr_in la;
memset((char *) &la, 0, sizeof(la));
la.sin_family = AF_INET;
la.sin_port = htons(port);
la.sin_addr.s_addr = INADDR_ANY;
if (::bind(m_sock, (struct sockaddr*)&la, sizeof(la))) {
throw runtime_error(string("Could not bind: ") + strerror(errno));
}
m_multicast_source = mcastaddr;
join_group(mcastaddr.c_str(), local_if_addr.c_str());
}
void UDPSocket::close()
{
if (m_sock != INVALID_SOCKET) {
::close(m_sock);
}
m_sock = INVALID_SOCKET;
}
UDPSocket::~UDPSocket()
{
if (m_sock != INVALID_SOCKET) {
::close(m_sock);
}
}
UDPPacket UDPSocket::receive(size_t max_size)
{
struct sockaddr_in addr;
struct msghdr msg;
struct iovec iov;
constexpr size_t BUFFER_SIZE = 1024;
char control_buffer[BUFFER_SIZE];
struct cmsghdr *cmsg;
UDPPacket packet(max_size);
memset(&msg, 0, sizeof(msg));
msg.msg_name = &addr;
msg.msg_namelen = sizeof(addr);
msg.msg_iov = &iov;
iov.iov_base = packet.buffer.data();
iov.iov_len = packet.buffer.size();
msg.msg_iovlen = 1;
msg.msg_control = control_buffer;
msg.msg_controllen = sizeof(control_buffer);
ssize_t ret = recvmsg(m_sock, &msg, 0);
if (ret == SOCKET_ERROR) {
packet.buffer.resize(0);
// This suppresses the -Wlogical-op warning
#if EAGAIN == EWOULDBLOCK
if (errno == EAGAIN)
#else
if (errno == EAGAIN or errno == EWOULDBLOCK)
#endif
{
return packet;
}
throw runtime_error(string("Can't receive data: ") + strerror(errno));
}
struct in_pktinfo *pktinfo = nullptr;
for (cmsg = CMSG_FIRSTHDR(&msg); cmsg != NULL; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
if (cmsg->cmsg_level == IPPROTO_IP && cmsg->cmsg_type == IP_PKTINFO) {
pktinfo = (struct in_pktinfo *)CMSG_DATA(cmsg);
break;
}
}
if (pktinfo) {
char src_addr[INET_ADDRSTRLEN];
char dst_addr[INET_ADDRSTRLEN];
inet_ntop(AF_INET, &(addr.sin_addr), src_addr, INET_ADDRSTRLEN);
inet_ntop(AF_INET, &(pktinfo->ipi_addr), dst_addr, INET_ADDRSTRLEN);
//fprintf(stderr, "Received packet from %s to %s: %zu\n", src_addr, dst_addr, ret);
memcpy(&packet.address.addr, &addr, sizeof(addr));
if (m_multicast_source.empty() or
strcmp(dst_addr, m_multicast_source.c_str()) == 0) {
packet.buffer.resize(ret);
}
else {
// Ignore packet for different multicast group
packet.buffer.resize(0);
}
}
else {
//fprintf(stderr, "No pktinfo: %zu\n", ret);
packet.buffer.resize(ret);
}
return packet;
}
void UDPSocket::send(UDPPacket& packet)
{
const int ret = sendto(m_sock, packet.buffer.data(), packet.buffer.size(), 0,
packet.address.as_sockaddr(), sizeof(*packet.address.as_sockaddr()));
if (ret == SOCKET_ERROR && errno != ECONNREFUSED) {
throw runtime_error(string("Can't send UDP packet: ") + strerror(errno));
}
}
void UDPSocket::send(const std::vector& data, InetAddress destination)
{
const int ret = sendto(m_sock, data.data(), data.size(), 0,
destination.as_sockaddr(), sizeof(*destination.as_sockaddr()));
if (ret == SOCKET_ERROR && errno != ECONNREFUSED) {
throw runtime_error(string("Can't send UDP packet: ") + strerror(errno));
}
}
void UDPSocket::send(const std::string& data, InetAddress destination)
{
const int ret = sendto(m_sock, data.data(), data.size(), 0,
destination.as_sockaddr(), sizeof(*destination.as_sockaddr()));
if (ret == SOCKET_ERROR && errno != ECONNREFUSED) {
throw runtime_error(string("Can't send UDP packet: ") + strerror(errno));
}
}
void UDPSocket::join_group(const char* groupname, const char* if_addr)
{
ip_mreqn group;
if ((group.imr_multiaddr.s_addr = inet_addr(groupname)) == INADDR_NONE) {
throw runtime_error("Cannot convert multicast group name");
}
if (!IN_MULTICAST(ntohl(group.imr_multiaddr.s_addr))) {
throw runtime_error(string("Group name '") + groupname + "' is not a multicast address");
}
if (if_addr) {
group.imr_address.s_addr = inet_addr(if_addr);
}
else {
group.imr_address.s_addr = htons(INADDR_ANY);
}
group.imr_ifindex = 0;
if (setsockopt(m_sock, IPPROTO_IP, IP_ADD_MEMBERSHIP, &group, sizeof(group))
== SOCKET_ERROR) {
throw runtime_error(string("Can't join multicast group: ") + strerror(errno));
}
}
void UDPSocket::setMulticastSource(const char* source_addr)
{
struct in_addr addr;
if (inet_aton(source_addr, &addr) == 0) {
throw runtime_error(string("Can't parse source address: ") + strerror(errno));
}
if (setsockopt(m_sock, IPPROTO_IP, IP_MULTICAST_IF, &addr, sizeof(addr))
== SOCKET_ERROR) {
throw runtime_error(string("Can't set source address: ") + strerror(errno));
}
}
void UDPSocket::setMulticastTTL(int ttl)
{
if (setsockopt(m_sock, IPPROTO_IP, IP_MULTICAST_TTL, &ttl, sizeof(ttl))
== SOCKET_ERROR) {
throw runtime_error(string("Can't set multicast ttl: ") + strerror(errno));
}
}
SOCKET UDPSocket::getNativeSocket() const
{
return m_sock;
}
int UDPSocket::getPort() const
{
return m_port;
}
void UDPReceiver::add_receive_port(int port, const string& bindto, const string& mcastaddr) {
UDPSocket sock;
if (IN_MULTICAST(ntohl(inet_addr(mcastaddr.c_str())))) {
sock.init_receive_multicast(port, bindto, mcastaddr);
}
else {
sock.reinit(port, bindto);
}
m_sockets.push_back(std::move(sock));
}
vector UDPReceiver::receive(int timeout_ms)
{
constexpr size_t MAX_FDS = 64;
struct pollfd fds[MAX_FDS];
if (m_sockets.size() > MAX_FDS) {
throw std::runtime_error("UDPReceiver only supports up to 64 ports");
}
for (size_t i = 0; i < m_sockets.size(); i++) {
fds[i].fd = m_sockets[i].getNativeSocket();
fds[i].events = POLLIN;
}
int retval = poll(fds, m_sockets.size(), timeout_ms);
if (retval == -1 and errno == EINTR) {
throw Interrupted();
}
else if (retval == -1) {
std::string errstr(strerror(errno));
throw std::runtime_error("UDP receive with poll() error: " + errstr);
}
else if (retval > 0) {
vector received;
for (size_t i = 0; i < m_sockets.size(); i++) {
if (fds[i].revents & POLLIN) {
auto p = m_sockets[i].receive(2048); // This is larger than the usual MTU
if (not p.buffer.empty()) {
ReceivedPacket rp;
rp.packetdata = std::move(p.buffer);
rp.received_from = std::move(p.address);
rp.port_received_on = m_sockets[i].getPort();
received.push_back(std::move(rp));
}
}
}
return received;
}
else {
throw Timeout();
}
}
TCPSocket::TCPSocket()
{
}
TCPSocket::~TCPSocket()
{
if (m_sock != -1) {
::close(m_sock);
}
}
TCPSocket::TCPSocket(TCPSocket&& other) :
m_sock(other.m_sock),
m_remote_address(std::move(other.m_remote_address))
{
if (other.m_sock != -1) {
other.m_sock = -1;
}
}
TCPSocket& TCPSocket::operator=(TCPSocket&& other)
{
swap(m_remote_address, other.m_remote_address);
m_sock = other.m_sock;
if (other.m_sock != -1) {
other.m_sock = -1;
}
return *this;
}
bool TCPSocket::valid() const
{
return m_sock != -1;
}
void TCPSocket::connect(const std::string& hostname, int port, int timeout_ms)
{
if (m_sock != INVALID_SOCKET) {
throw std::logic_error("You may only connect an invalid TCPSocket");
}
char service[NI_MAXSERV];
snprintf(service, NI_MAXSERV-1, "%d", port);
/* Obtain address(es) matching host/port */
struct addrinfo hints;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = 0;
hints.ai_protocol = 0;
struct addrinfo *result, *rp;
int s = getaddrinfo(hostname.c_str(), service, &hints, &result);
if (s != 0) {
throw runtime_error(string("getaddrinfo failed: ") + gai_strerror(s));
}
int flags = 0;
/* getaddrinfo() returns a list of address structures.
Try each address until we successfully connect(2).
If socket(2) (or connect(2)) fails, we (close the socket
and) try the next address. */
for (rp = result; rp != nullptr; rp = rp->ai_next) {
int sfd = ::socket(rp->ai_family, rp->ai_socktype,
rp->ai_protocol);
if (sfd == -1)
continue;
flags = fcntl(sfd, F_GETFL);
if (flags == -1) {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP: Could not get socket flags: " + errstr);
}
if (fcntl(sfd, F_SETFL, flags | O_NONBLOCK) == -1) {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP: Could not set O_NONBLOCK: " + errstr);
}
int ret = ::connect(sfd, rp->ai_addr, rp->ai_addrlen);
if (ret == 0) {
m_sock = sfd;
break;
}
if (ret == -1 and errno == EINPROGRESS) {
m_sock = sfd;
struct pollfd fds[1];
fds[0].fd = m_sock;
fds[0].events = POLLOUT;
int retval = poll(fds, 1, timeout_ms);
if (retval == -1) {
std::string errstr(strerror(errno));
::close(m_sock);
freeaddrinfo(result);
throw runtime_error("TCP: connect error on poll: " + errstr);
}
else if (retval > 0) {
int so_error = 0;
socklen_t len = sizeof(so_error);
if (getsockopt(m_sock, SOL_SOCKET, SO_ERROR, &so_error, &len) == -1) {
std::string errstr(strerror(errno));
::close(m_sock);
freeaddrinfo(result);
throw runtime_error("TCP: getsockopt error connect: " + errstr);
}
if (so_error == 0) {
break;
}
}
else {
::close(m_sock);
freeaddrinfo(result);
throw runtime_error("Timeout on connect");
}
break;
}
::close(sfd);
}
if (m_sock != INVALID_SOCKET) {
#if defined(HAVE_SO_NOSIGPIPE)
int val = 1;
if (setsockopt(m_sock, SOL_SOCKET, SO_NOSIGPIPE, &val, sizeof(val))
== SOCKET_ERROR) {
throw runtime_error("Can't set SO_NOSIGPIPE");
}
#endif
}
// Don't keep the socket blocking
if (fcntl(m_sock, F_SETFL, flags) == -1) {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP: Could not set O_NONBLOCK: " + errstr);
}
freeaddrinfo(result);
if (rp == nullptr) {
throw runtime_error("Could not connect");
}
}
void TCPSocket::connect(const std::string& hostname, int port, bool nonblock)
{
if (m_sock != INVALID_SOCKET) {
throw std::logic_error("You may only connect an invalid TCPSocket");
}
char service[NI_MAXSERV];
snprintf(service, NI_MAXSERV-1, "%d", port);
/* Obtain address(es) matching host/port */
struct addrinfo hints;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = 0;
hints.ai_protocol = 0;
struct addrinfo *result, *rp;
int s = getaddrinfo(hostname.c_str(), service, &hints, &result);
if (s != 0) {
throw runtime_error(string("getaddrinfo failed: ") + gai_strerror(s));
}
/* getaddrinfo() returns a list of address structures.
Try each address until we successfully connect(2).
If socket(2) (or connect(2)) fails, we (close the socket
and) try the next address. */
for (rp = result; rp != nullptr; rp = rp->ai_next) {
int sfd = ::socket(rp->ai_family, rp->ai_socktype,
rp->ai_protocol);
if (sfd == -1)
continue;
if (nonblock) {
int flags = fcntl(sfd, F_GETFL);
if (flags == -1) {
std::string errstr(strerror(errno));
freeaddrinfo(result);
::close(sfd);
throw std::runtime_error("TCP: Could not get socket flags: " + errstr);
}
if (fcntl(sfd, F_SETFL, flags | O_NONBLOCK) == -1) {
std::string errstr(strerror(errno));
freeaddrinfo(result);
::close(sfd);
throw std::runtime_error("TCP: Could not set O_NONBLOCK: " + errstr);
}
}
int ret = ::connect(sfd, rp->ai_addr, rp->ai_addrlen);
if (ret != -1 or (ret == -1 and errno == EINPROGRESS)) {
m_sock = sfd;
break;
}
::close(sfd);
}
if (m_sock != INVALID_SOCKET) {
#if defined(HAVE_SO_NOSIGPIPE)
int val = 1;
if (setsockopt(m_sock, SOL_SOCKET, SO_NOSIGPIPE, &val, sizeof(val))
== SOCKET_ERROR) {
throw std::runtime_error("Can't set SO_NOSIGPIPE");
}
#endif
}
freeaddrinfo(result); /* No longer needed */
if (rp == nullptr) {
throw runtime_error("Could not connect");
}
}
void TCPSocket::enable_keepalive(int time, int intvl, int probes)
{
if (m_sock == INVALID_SOCKET) {
throw std::logic_error("You may not call enable_keepalive on invalid socket");
}
int optval = 1;
auto optlen = sizeof(optval);
if (setsockopt(m_sock, SOL_SOCKET, SO_KEEPALIVE, &optval, optlen) < 0) {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP: Could not set SO_KEEPALIVE: " + errstr);
}
optval = time;
if (setsockopt(m_sock, SOL_TCP, TCP_KEEPIDLE, &optval, optlen) < 0) {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP: Could not set TCP_KEEPIDLE: " + errstr);
}
optval = intvl;
if (setsockopt(m_sock, SOL_TCP, TCP_KEEPINTVL, &optval, optlen) < 0) {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP: Could not set TCP_KEEPINTVL: " + errstr);
}
optval = probes;
if (setsockopt(m_sock, SOL_TCP, TCP_KEEPCNT, &optval, optlen) < 0) {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP: Could not set TCP_KEEPCNT: " + errstr);
}
}
void TCPSocket::listen(int port, const string& name)
{
if (m_sock != INVALID_SOCKET) {
throw std::logic_error("You may only listen with an invalid TCPSocket");
}
char service[NI_MAXSERV];
snprintf(service, NI_MAXSERV-1, "%d", port);
struct addrinfo hints;
memset(&hints, 0, sizeof(struct addrinfo));
hints.ai_family = AF_INET;
hints.ai_socktype = SOCK_STREAM;
hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */
hints.ai_protocol = 0;
hints.ai_canonname = nullptr;
hints.ai_addr = nullptr;
hints.ai_next = nullptr;
struct addrinfo *result, *rp;
int s = getaddrinfo(name.empty() ? nullptr : name.c_str(), service, &hints, &result);
if (s != 0) {
throw runtime_error(string("getaddrinfo failed: ") + gai_strerror(s));
}
/* getaddrinfo() returns a list of address structures.
Try each address until we successfully bind(2).
If socket(2) (or bind(2)) fails, we (close the socket
and) try the next address. */
for (rp = result; rp != nullptr; rp = rp->ai_next) {
int sfd = ::socket(rp->ai_family, rp->ai_socktype, rp->ai_protocol);
if (sfd == -1) {
continue;
}
int reuse_setting = 1;
if (setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, &reuse_setting, sizeof(reuse_setting)) == -1) {
throw runtime_error("Can't reuse address");
}
if (::bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0) {
m_sock = sfd;
break;
}
::close(sfd);
}
freeaddrinfo(result);
if (m_sock != INVALID_SOCKET) {
#if defined(HAVE_SO_NOSIGPIPE)
int val = 1;
if (setsockopt(m_sock, SOL_SOCKET, SO_NOSIGPIPE,
&val, sizeof(val)) < 0) {
throw std::runtime_error("Can't set SO_NOSIGPIPE");
}
#endif
int ret = ::listen(m_sock, 0);
if (ret == -1) {
throw std::runtime_error(string("Could not listen: ") + strerror(errno));
}
}
if (rp == nullptr) {
throw runtime_error("Could not bind");
}
}
void TCPSocket::close()
{
::close(m_sock);
m_sock = -1;
}
TCPSocket TCPSocket::accept(int timeout_ms)
{
if (timeout_ms == 0) {
InetAddress remote_addr;
socklen_t client_len = sizeof(remote_addr.addr);
int sockfd = ::accept(m_sock, remote_addr.as_sockaddr(), &client_len);
TCPSocket s(sockfd, remote_addr);
return s;
}
else {
struct pollfd fds[1];
fds[0].fd = m_sock;
fds[0].events = POLLIN;
int retval = poll(fds, 1, timeout_ms);
if (retval == -1) {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP Socket accept error: " + errstr);
}
else if (retval > 0) {
InetAddress remote_addr;
socklen_t client_len = sizeof(remote_addr.addr);
int sockfd = ::accept(m_sock, remote_addr.as_sockaddr(), &client_len);
TCPSocket s(sockfd, remote_addr);
return s;
}
else {
TCPSocket s(-1);
return s;
}
}
}
ssize_t TCPSocket::sendall(const void *buffer, size_t buflen)
{
uint8_t *buf = (uint8_t*)buffer;
while (buflen > 0) {
/* On Linux, the MSG_NOSIGNAL flag ensures that the process
* would not receive a SIGPIPE and die.
* Other systems have SO_NOSIGPIPE set on the socket for the
* same effect. */
#if defined(HAVE_MSG_NOSIGNAL)
const int flags = MSG_NOSIGNAL;
#else
const int flags = 0;
#endif
ssize_t sent = ::send(m_sock, buf, buflen, flags);
if (sent < 0) {
return -1;
}
else {
buf += sent;
buflen -= sent;
}
}
return buflen;
}
ssize_t TCPSocket::send(const void* data, size_t size, int timeout_ms)
{
if (timeout_ms) {
struct pollfd fds[1];
fds[0].fd = m_sock;
fds[0].events = POLLOUT;
const int retval = poll(fds, 1, timeout_ms);
if (retval == -1) {
throw std::runtime_error(string("TCP Socket send error on poll(): ") + strerror(errno));
}
else if (retval == 0) {
// Timed out
return 0;
}
}
/* On Linux, the MSG_NOSIGNAL flag ensures that the process would not
* receive a SIGPIPE and die.
* Other systems have SO_NOSIGPIPE set on the socket for the same effect. */
#if defined(HAVE_MSG_NOSIGNAL)
const int flags = MSG_NOSIGNAL;
#else
const int flags = 0;
#endif
const ssize_t ret = ::send(m_sock, (const char*)data, size, flags);
if (ret == SOCKET_ERROR) {
throw std::runtime_error(string("TCP Socket send error: ") + strerror(errno));
}
return ret;
}
ssize_t TCPSocket::recv(void *buffer, size_t length, int flags)
{
ssize_t ret = ::recv(m_sock, buffer, length, flags);
if (ret == -1) {
if (errno == EINTR) {
throw Interrupted();
}
else {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP receive error: " + errstr);
}
}
return ret;
}
ssize_t TCPSocket::recv(void *buffer, size_t length, int flags, int timeout_ms)
{
struct pollfd fds[1];
fds[0].fd = m_sock;
fds[0].events = POLLIN;
int retval = poll(fds, 1, timeout_ms);
if (retval == -1 and errno == EINTR) {
throw Interrupted();
}
else if (retval == -1) {
std::string errstr(strerror(errno));
throw std::runtime_error("TCP receive with poll() error: " + errstr);
}
else if (retval > 0 and (fds[0].revents & POLLIN)) {
ssize_t ret = ::recv(m_sock, buffer, length, flags);
if (ret == -1) {
if (errno == ECONNREFUSED) {
return 0;
}
std::string errstr(strerror(errno));
throw std::runtime_error("TCP receive after poll() error: " + errstr);
}
return ret;
}
else {
throw Timeout();
}
}
TCPSocket::TCPSocket(int sockfd) :
m_sock(sockfd),
m_remote_address()
{ }
TCPSocket::TCPSocket(int sockfd, InetAddress remote_address) :
m_sock(sockfd),
m_remote_address(remote_address)
{ }
void TCPClient::connect(const std::string& hostname, int port)
{
m_hostname = hostname;
m_port = port;
reconnect();
}
ssize_t TCPClient::recv(void *buffer, size_t length, int flags, int timeout_ms)
{
try {
ssize_t ret = m_sock.recv(buffer, length, flags, timeout_ms);
if (ret == 0) {
m_sock.close();
reconnect();
}
m_last_received_packet_ts = chrono::steady_clock::now();
return ret;
}
catch (const TCPSocket::Interrupted&) {
return -1;
}
catch (const TCPSocket::Timeout&) {
const auto timeout = chrono::milliseconds(timeout_ms * 5);
if (m_last_received_packet_ts.has_value() and
chrono::steady_clock::now() - *m_last_received_packet_ts > timeout)
{
// This is to catch half-closed TCP connections
reconnect();
}
return 0;
}
throw std::logic_error("unreachable");
}
void TCPClient::reconnect()
{
TCPSocket newsock;
m_sock = std::move(newsock);
m_last_received_packet_ts = nullopt;
m_sock.connect(m_hostname, m_port, true);
}
TCPConnection::TCPConnection(TCPSocket&& sock) :
queue(),
m_running(true),
m_sender_thread(),
m_sock(std::move(sock))
{
#if MISSING_OWN_ADDR
auto own_addr = m_sock.getOwnAddress();
auto addr = m_sock.getRemoteAddress();
etiLog.level(debug) << "New TCP Connection on port " <<
own_addr.getPort() << " from " <<
addr.getHostAddress() << ":" << addr.getPort();
#endif
m_sender_thread = std::thread(&TCPConnection::process, this);
}
TCPConnection::~TCPConnection()
{
m_running = false;
vector termination_marker;
queue.push(termination_marker);
if (m_sender_thread.joinable()) {
m_sender_thread.join();
}
}
void TCPConnection::process()
{
while (m_running) {
vector data;
queue.wait_and_pop(data);
if (data.empty()) {
// empty vector is the termination marker
m_running = false;
break;
}
try {
ssize_t remaining = data.size();
const uint8_t *buf = reinterpret_cast(data.data());
const int timeout_ms = 10; // Less than one ETI frame
while (m_running and remaining > 0) {
const ssize_t sent = m_sock.send(buf, remaining, timeout_ms);
if (sent < 0 or sent > remaining) {
throw std::logic_error("Invalid TCPSocket::send() return value");
}
remaining -= sent;
buf += sent;
}
}
catch (const std::runtime_error& e) {
m_running = false;
}
}
#if MISSING_OWN_ADDR
auto own_addr = m_sock.getOwnAddress();
auto addr = m_sock.getRemoteAddress();
etiLog.level(debug) << "Dropping TCP Connection on port " <<
own_addr.getPort() << " from " <<
addr.getHostAddress() << ":" << addr.getPort();
#endif
}
TCPDataDispatcher::TCPDataDispatcher(size_t max_queue_size, size_t buffers_to_preroll) :
m_max_queue_size(max_queue_size),
m_buffers_to_preroll(buffers_to_preroll)
{
}
TCPDataDispatcher::~TCPDataDispatcher()
{
m_running = false;
m_connections.clear();
m_listener_socket.close();
if (m_listener_thread.joinable()) {
m_listener_thread.join();
}
}
void TCPDataDispatcher::start(int port, const string& address)
{
m_listener_socket.listen(port, address);
m_running = true;
m_listener_thread = std::thread(&TCPDataDispatcher::process, this);
}
void TCPDataDispatcher::write(const vector& data)
{
if (not m_running) {
throw runtime_error(m_exception_data);
}
auto lock = unique_lock(m_mutex);
if (m_buffers_to_preroll > 0) {
m_preroll_queue.push_back(data);
if (m_preroll_queue.size() > m_buffers_to_preroll) {
m_preroll_queue.pop_front();
}
}
for (auto& connection : m_connections) {
connection.queue.push(data);
}
m_connections.remove_if( [&](const TCPConnection& conn){ return conn.queue.size() > m_max_queue_size; });
}
void TCPDataDispatcher::process()
{
try {
const int timeout_ms = 1000;
while (m_running) {
// Add a new TCPConnection to the list, constructing it from the client socket
auto sock = m_listener_socket.accept(timeout_ms);
if (sock.valid()) {
auto lock = unique_lock(m_mutex);
m_connections.emplace(m_connections.begin(), std::move(sock));
if (m_buffers_to_preroll > 0) {
for (const auto& buf : m_preroll_queue) {
m_connections.front().queue.push(buf);
}
}
}
}
}
catch (const std::runtime_error& e) {
m_exception_data = string("TCPDataDispatcher error: ") + e.what();
m_running = false;
}
}
TCPReceiveServer::TCPReceiveServer(size_t blocksize) :
m_blocksize(blocksize)
{
}
void TCPReceiveServer::start(int listen_port, const std::string& address)
{
m_listener_socket.listen(listen_port, address);
m_running = true;
m_listener_thread = std::thread(&TCPReceiveServer::process, this);
}
TCPReceiveServer::~TCPReceiveServer()
{
m_running = false;
if (m_listener_thread.joinable()) {
m_listener_thread.join();
}
}
shared_ptr TCPReceiveServer::receive()
{
shared_ptr buffer = make_shared();
m_queue.try_pop(buffer);
// we can ignore try_pop()'s return value, because
// if it is unsuccessful the buffer is not touched.
return buffer;
}
void TCPReceiveServer::process()
{
constexpr int timeout_ms = 1000;
constexpr int disconnect_timeout_ms = 10000;
constexpr int max_num_timeouts = disconnect_timeout_ms / timeout_ms;
while (m_running) {
auto sock = m_listener_socket.accept(timeout_ms);
int num_timeouts = 0;
while (m_running and sock.valid()) {
try {
vector buf(m_blocksize);
ssize_t r = sock.recv(buf.data(), buf.size(), 0, timeout_ms);
if (r < 0) {
throw logic_error("Invalid recv return value");
}
else if (r == 0) {
sock.close();
m_queue.push(make_shared());
break;
}
else {
buf.resize(r);
m_queue.push(make_shared(std::move(buf)));
}
}
catch (const TCPSocket::Interrupted&) {
break;
}
catch (const TCPSocket::Timeout&) {
num_timeouts++;
}
catch (const runtime_error& e) {
sock.close();
// TODO replace fprintf
fprintf(stderr, "TCP Receiver restarted after error: %s\n", e.what());
m_queue.push(make_shared());
}
if (num_timeouts > max_num_timeouts) {
sock.close();
m_queue.push(make_shared());
}
}
}
}
TCPSendClient::TCPSendClient(const std::string& hostname, int port) :
m_hostname(hostname),
m_port(port),
m_running(true)
{
m_sender_thread = std::thread(&TCPSendClient::process, this);
}
TCPSendClient::~TCPSendClient()
{
m_running = false;
m_queue.trigger_wakeup();
if (m_sender_thread.joinable()) {
m_sender_thread.join();
}
}
TCPSendClient::ErrorStats TCPSendClient::sendall(const std::vector& buffer)
{
if (not m_running) {
throw runtime_error(m_exception_data);
}
m_queue.push(buffer);
if (m_queue.size() > MAX_QUEUE_SIZE) {
vector discard;
m_queue.try_pop(discard);
}
TCPSendClient::ErrorStats es;
es.num_reconnects = m_num_reconnects.load();
es.has_seen_new_errors = es.num_reconnects != m_num_reconnects_prev;
m_num_reconnects_prev = es.num_reconnects;
auto lock = unique_lock(m_error_mutex);
es.last_error = m_last_error;
return es;
}
void TCPSendClient::process()
{
try {
while (m_running) {
if (m_is_connected) {
try {
vector incoming;
m_queue.wait_and_pop(incoming);
if (m_sock.sendall(incoming.data(), incoming.size()) == -1) {
m_is_connected = false;
m_sock = TCPSocket();
}
}
catch (const ThreadsafeQueueWakeup&) {
break;
}
}
else {
try {
m_num_reconnects.fetch_add(1, std::memory_order_seq_cst);
m_sock.connect(m_hostname, m_port);
m_is_connected = true;
}
catch (const runtime_error& e) {
m_is_connected = false;
this_thread::sleep_for(chrono::seconds(1));
auto lock = unique_lock(m_error_mutex);
m_last_error = e.what();
}
}
}
}
catch (const runtime_error& e) {
m_exception_data = e.what();
m_running = false;
}
}
}