/* * Copyright (c) 2003-2004, Mark Borgerding. All rights reserved. * This file is part of KISS FFT - https://github.com/mborgerding/kissfft * * SPDX-License-Identifier: BSD-3-Clause * See COPYING file for more information. */ #include "kiss_fftnd.h" #include "_kiss_fft_guts.h" struct kiss_fftnd_state{ int dimprod; /* dimsum would be mighty tasty right now */ int ndims; int *dims; kiss_fft_cfg *states; /* cfg states for each dimension */ kiss_fft_cpx * tmpbuf; /*buffer capable of hold the entire input */ }; kiss_fftnd_cfg kiss_fftnd_alloc(const int *dims,int ndims,int inverse_fft,void*mem,size_t*lenmem) { KISS_FFT_ALIGN_CHECK(mem) kiss_fftnd_cfg st = NULL; int i; int dimprod=1; size_t memneeded = KISS_FFT_ALIGN_SIZE_UP(sizeof(struct kiss_fftnd_state)); char * ptr = NULL; for (i=0;istates[i] */ dimprod *= dims[i]; } memneeded += KISS_FFT_ALIGN_SIZE_UP(sizeof(int) * ndims);/* st->dims */ memneeded += KISS_FFT_ALIGN_SIZE_UP(sizeof(void*) * ndims);/* st->states */ memneeded += KISS_FFT_ALIGN_SIZE_UP(sizeof(kiss_fft_cpx) * dimprod); /* st->tmpbuf */ if (lenmem == NULL) {/* allocate for the caller*/ ptr = (char *) malloc (memneeded); } else { /* initialize supplied buffer if big enough */ if (*lenmem >= memneeded) ptr = (char *) mem; *lenmem = memneeded; /*tell caller how big struct is (or would be) */ } if (!ptr) return NULL; /*malloc failed or buffer too small */ st = (kiss_fftnd_cfg) ptr; st->dimprod = dimprod; st->ndims = ndims; ptr += KISS_FFT_ALIGN_SIZE_UP(sizeof(struct kiss_fftnd_state)); st->states = (kiss_fft_cfg *)ptr; ptr += KISS_FFT_ALIGN_SIZE_UP(sizeof(void*) * ndims); st->dims = (int*)ptr; ptr += KISS_FFT_ALIGN_SIZE_UP(sizeof(int) * ndims); st->tmpbuf = (kiss_fft_cpx*)ptr; ptr += KISS_FFT_ALIGN_SIZE_UP(sizeof(kiss_fft_cpx) * dimprod); for (i=0;idims[i] = dims[i]; kiss_fft_alloc (st->dims[i], inverse_fft, NULL, &len); st->states[i] = kiss_fft_alloc (st->dims[i], inverse_fft, ptr,&len); ptr += len; } /* Hi there! If you're looking at this particular code, it probably means you've got a brain-dead bounds checker that thinks the above code overwrites the end of the array. It doesn't. -- Mark P.S. The below code might give you some warm fuzzies and help convince you. */ if ( ptr - (char*)st != (int)memneeded ) { fprintf(stderr, "################################################################################\n" "Internal error! Memory allocation miscalculation\n" "################################################################################\n" ); } return st; } /* This works by tackling one dimension at a time. In effect, Each stage starts out by reshaping the matrix into a DixSi 2d matrix. A Di-sized fft is taken of each column, transposing the matrix as it goes. Here's a 3-d example: Take a 2x3x4 matrix, laid out in memory as a contiguous buffer [ [ [ a b c d ] [ e f g h ] [ i j k l ] ] [ [ m n o p ] [ q r s t ] [ u v w x ] ] ] Stage 0 ( D=2): treat the buffer as a 2x12 matrix [ [a b ... k l] [m n ... w x] ] FFT each column with size 2. Transpose the matrix at the same time using kiss_fft_stride. [ [ a+m a-m ] [ b+n b-n] ... [ k+w k-w ] [ l+x l-x ] ] Note fft([x y]) == [x+y x-y] Stage 1 ( D=3) treats the buffer (the output of stage D=2) as an 3x8 matrix, [ [ a+m a-m b+n b-n c+o c-o d+p d-p ] [ e+q e-q f+r f-r g+s g-s h+t h-t ] [ i+u i-u j+v j-v k+w k-w l+x l-x ] ] And perform FFTs (size=3) on each of the columns as above, transposing the matrix as it goes. The output of stage 1 is (Legend: ap = [ a+m e+q i+u ] am = [ a-m e-q i-u ] ) [ [ sum(ap) fft(ap)[0] fft(ap)[1] ] [ sum(am) fft(am)[0] fft(am)[1] ] [ sum(bp) fft(bp)[0] fft(bp)[1] ] [ sum(bm) fft(bm)[0] fft(bm)[1] ] [ sum(cp) fft(cp)[0] fft(cp)[1] ] [ sum(cm) fft(cm)[0] fft(cm)[1] ] [ sum(dp) fft(dp)[0] fft(dp)[1] ] [ sum(dm) fft(dm)[0] fft(dm)[1] ] ] Stage 2 ( D=4) treats this buffer as a 4*6 matrix, [ [ sum(ap) fft(ap)[0] fft(ap)[1] sum(am) fft(am)[0] fft(am)[1] ] [ sum(bp) fft(bp)[0] fft(bp)[1] sum(bm) fft(bm)[0] fft(bm)[1] ] [ sum(cp) fft(cp)[0] fft(cp)[1] sum(cm) fft(cm)[0] fft(cm)[1] ] [ sum(dp) fft(dp)[0] fft(dp)[1] sum(dm) fft(dm)[0] fft(dm)[1] ] ] Then FFTs each column, transposing as it goes. The resulting matrix is the 3d FFT of the 2x3x4 input matrix. Note as a sanity check that the first element of the final stage's output (DC term) is sum( [ sum(ap) sum(bp) sum(cp) sum(dp) ] ) , i.e. the summation of all 24 input elements. */ void kiss_fftnd(kiss_fftnd_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout) { int i,k; const kiss_fft_cpx * bufin=fin; kiss_fft_cpx * bufout; /*arrange it so the last bufout == fout*/ if ( st->ndims & 1 ) { bufout = fout; if (fin==fout) { memcpy( st->tmpbuf, fin, sizeof(kiss_fft_cpx) * st->dimprod ); bufin = st->tmpbuf; } }else bufout = st->tmpbuf; for ( k=0; k < st->ndims; ++k) { int curdim = st->dims[k]; int stride = st->dimprod / curdim; for ( i=0 ; istates[k], bufin+i , bufout+i*curdim, stride ); /*toggle back and forth between the two buffers*/ if (bufout == st->tmpbuf){ bufout = fout; bufin = st->tmpbuf; }else{ bufout = st->tmpbuf; bufin = fout; } } }