/* * Copyright (c) 2003-2010, Mark Borgerding. All rights reserved. * This file is part of KISS FFT - https://github.com/mborgerding/kissfft * * SPDX-License-Identifier: BSD-3-Clause * See COPYING file for more information. */ #include "_kiss_fft_guts.h" /* The guts header contains all the multiplication and addition macros that are defined for fixed or floating point complex numbers. It also delares the kf_ internal functions. */ static void kf_bfly2( kiss_fft_cpx * Fout, const size_t fstride, const kiss_fft_cfg st, int m ) { kiss_fft_cpx * Fout2; kiss_fft_cpx * tw1 = st->twiddles; kiss_fft_cpx t; Fout2 = Fout + m; do{ C_FIXDIV(*Fout,2); C_FIXDIV(*Fout2,2); C_MUL (t, *Fout2 , *tw1); tw1 += fstride; C_SUB( *Fout2 , *Fout , t ); C_ADDTO( *Fout , t ); ++Fout2; ++Fout; }while (--m); } static void kf_bfly4( kiss_fft_cpx * Fout, const size_t fstride, const kiss_fft_cfg st, const size_t m ) { kiss_fft_cpx *tw1,*tw2,*tw3; kiss_fft_cpx scratch[6]; size_t k=m; const size_t m2=2*m; const size_t m3=3*m; tw3 = tw2 = tw1 = st->twiddles; do { C_FIXDIV(*Fout,4); C_FIXDIV(Fout[m],4); C_FIXDIV(Fout[m2],4); C_FIXDIV(Fout[m3],4); C_MUL(scratch[0],Fout[m] , *tw1 ); C_MUL(scratch[1],Fout[m2] , *tw2 ); C_MUL(scratch[2],Fout[m3] , *tw3 ); C_SUB( scratch[5] , *Fout, scratch[1] ); C_ADDTO(*Fout, scratch[1]); C_ADD( scratch[3] , scratch[0] , scratch[2] ); C_SUB( scratch[4] , scratch[0] , scratch[2] ); C_SUB( Fout[m2], *Fout, scratch[3] ); tw1 += fstride; tw2 += fstride*2; tw3 += fstride*3; C_ADDTO( *Fout , scratch[3] ); if(st->inverse) { Fout[m].r = scratch[5].r - scratch[4].i; Fout[m].i = scratch[5].i + scratch[4].r; Fout[m3].r = scratch[5].r + scratch[4].i; Fout[m3].i = scratch[5].i - scratch[4].r; }else{ Fout[m].r = scratch[5].r + scratch[4].i; Fout[m].i = scratch[5].i - scratch[4].r; Fout[m3].r = scratch[5].r - scratch[4].i; Fout[m3].i = scratch[5].i + scratch[4].r; } ++Fout; }while(--k); } static void kf_bfly3( kiss_fft_cpx * Fout, const size_t fstride, const kiss_fft_cfg st, size_t m ) { size_t k=m; const size_t m2 = 2*m; kiss_fft_cpx *tw1,*tw2; kiss_fft_cpx scratch[5]; kiss_fft_cpx epi3; epi3 = st->twiddles[fstride*m]; tw1=tw2=st->twiddles; do{ C_FIXDIV(*Fout,3); C_FIXDIV(Fout[m],3); C_FIXDIV(Fout[m2],3); C_MUL(scratch[1],Fout[m] , *tw1); C_MUL(scratch[2],Fout[m2] , *tw2); C_ADD(scratch[3],scratch[1],scratch[2]); C_SUB(scratch[0],scratch[1],scratch[2]); tw1 += fstride; tw2 += fstride*2; Fout[m].r = Fout->r - HALF_OF(scratch[3].r); Fout[m].i = Fout->i - HALF_OF(scratch[3].i); C_MULBYSCALAR( scratch[0] , epi3.i ); C_ADDTO(*Fout,scratch[3]); Fout[m2].r = Fout[m].r + scratch[0].i; Fout[m2].i = Fout[m].i - scratch[0].r; Fout[m].r -= scratch[0].i; Fout[m].i += scratch[0].r; ++Fout; }while(--k); } static void kf_bfly5( kiss_fft_cpx * Fout, const size_t fstride, const kiss_fft_cfg st, int m ) { kiss_fft_cpx *Fout0,*Fout1,*Fout2,*Fout3,*Fout4; int u; kiss_fft_cpx scratch[13]; kiss_fft_cpx * twiddles = st->twiddles; kiss_fft_cpx *tw; kiss_fft_cpx ya,yb; ya = twiddles[fstride*m]; yb = twiddles[fstride*2*m]; Fout0=Fout; Fout1=Fout0+m; Fout2=Fout0+2*m; Fout3=Fout0+3*m; Fout4=Fout0+4*m; tw=st->twiddles; for ( u=0; ur += scratch[7].r + scratch[8].r; Fout0->i += scratch[7].i + scratch[8].i; scratch[5].r = scratch[0].r + S_MUL(scratch[7].r,ya.r) + S_MUL(scratch[8].r,yb.r); scratch[5].i = scratch[0].i + S_MUL(scratch[7].i,ya.r) + S_MUL(scratch[8].i,yb.r); scratch[6].r = S_MUL(scratch[10].i,ya.i) + S_MUL(scratch[9].i,yb.i); scratch[6].i = -S_MUL(scratch[10].r,ya.i) - S_MUL(scratch[9].r,yb.i); C_SUB(*Fout1,scratch[5],scratch[6]); C_ADD(*Fout4,scratch[5],scratch[6]); scratch[11].r = scratch[0].r + S_MUL(scratch[7].r,yb.r) + S_MUL(scratch[8].r,ya.r); scratch[11].i = scratch[0].i + S_MUL(scratch[7].i,yb.r) + S_MUL(scratch[8].i,ya.r); scratch[12].r = - S_MUL(scratch[10].i,yb.i) + S_MUL(scratch[9].i,ya.i); scratch[12].i = S_MUL(scratch[10].r,yb.i) - S_MUL(scratch[9].r,ya.i); C_ADD(*Fout2,scratch[11],scratch[12]); C_SUB(*Fout3,scratch[11],scratch[12]); ++Fout0;++Fout1;++Fout2;++Fout3;++Fout4; } } /* perform the butterfly for one stage of a mixed radix FFT */ static void kf_bfly_generic( kiss_fft_cpx * Fout, const size_t fstride, const kiss_fft_cfg st, int m, int p ) { int u,k,q1,q; kiss_fft_cpx * twiddles = st->twiddles; kiss_fft_cpx t; int Norig = st->nfft; kiss_fft_cpx * scratch = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx)*p); if (scratch == NULL){ KISS_FFT_ERROR("Memory allocation failed."); return; } for ( u=0; u=Norig) twidx-=Norig; C_MUL(t,scratch[q] , twiddles[twidx] ); C_ADDTO( Fout[ k ] ,t); } k += m; } } KISS_FFT_TMP_FREE(scratch); } static void kf_work( kiss_fft_cpx * Fout, const kiss_fft_cpx * f, const size_t fstride, int in_stride, int * factors, const kiss_fft_cfg st ) { kiss_fft_cpx * Fout_beg=Fout; const int p=*factors++; /* the radix */ const int m=*factors++; /* stage's fft length/p */ const kiss_fft_cpx * Fout_end = Fout + p*m; #ifdef _OPENMP // use openmp extensions at the // top-level (not recursive) if (fstride==1 && p<=5 && m!=1) { int k; // execute the p different work units in different threads # pragma omp parallel for for (k=0;k floor_sqrt) p = n; /* no more factors, skip to end */ } n /= p; *facbuf++ = p; *facbuf++ = n; } while (n > 1); } /* * * User-callable function to allocate all necessary storage space for the fft. * * The return value is a contiguous block of memory, allocated with malloc. As such, * It can be freed with free(), rather than a kiss_fft-specific function. * */ kiss_fft_cfg kiss_fft_alloc(int nfft,int inverse_fft,void * mem,size_t * lenmem ) { KISS_FFT_ALIGN_CHECK(mem) kiss_fft_cfg st=NULL; size_t memneeded = KISS_FFT_ALIGN_SIZE_UP(sizeof(struct kiss_fft_state) + sizeof(kiss_fft_cpx)*(nfft-1)); /* twiddle factors*/ if ( lenmem==NULL ) { st = ( kiss_fft_cfg)KISS_FFT_MALLOC( memneeded ); }else{ if (mem != NULL && *lenmem >= memneeded) st = (kiss_fft_cfg)mem; *lenmem = memneeded; } if (st) { int i; st->nfft=nfft; st->inverse = inverse_fft; for (i=0;iinverse) phase *= -1; kf_cexp(st->twiddles+i, phase ); } kf_factor(nfft,st->factors); } return st; } void kiss_fft_stride(kiss_fft_cfg st,const kiss_fft_cpx *fin,kiss_fft_cpx *fout,int in_stride) { if (fin == fout) { //NOTE: this is not really an in-place FFT algorithm. //It just performs an out-of-place FFT into a temp buffer if (fout == NULL){ KISS_FFT_ERROR("fout buffer NULL."); return; } kiss_fft_cpx * tmpbuf = (kiss_fft_cpx*)KISS_FFT_TMP_ALLOC( sizeof(kiss_fft_cpx)*st->nfft); if (tmpbuf == NULL){ KISS_FFT_ERROR("Memory allocation error."); return; } kf_work(tmpbuf,fin,1,in_stride, st->factors,st); memcpy(fout,tmpbuf,sizeof(kiss_fft_cpx)*st->nfft); KISS_FFT_TMP_FREE(tmpbuf); }else{ kf_work( fout, fin, 1,in_stride, st->factors,st ); } } void kiss_fft(kiss_fft_cfg cfg,const kiss_fft_cpx *fin,kiss_fft_cpx *fout) { kiss_fft_stride(cfg,fin,fout,1); } void kiss_fft_cleanup(void) { // nothing needed any more } int kiss_fft_next_fast_size(int n) { while(1) { int m=n; while ( (m%2) == 0 ) m/=2; while ( (m%3) == 0 ) m/=3; while ( (m%5) == 0 ) m/=5; if (m<=1) break; /* n is completely factorable by twos, threes, and fives */ n++; } return n; }