# -*- coding: utf-8 -*- # # DPD Computation Engine, Capture TX signal and RX feedback using ODR-DabMod's # DPD Server. # # Copyright (c) 2017 Andreas Steger # Copyright (c) 2018 Matthias P. Braendli # # http://www.opendigitalradio.org # # This file is part of ODR-DabMod. # # ODR-DabMod is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # ODR-DabMod is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with ODR-DabMod. If not, see . import socket import struct import os import logging import numpy as np from scipy import signal from . import Align as sa def align_samples(sig_tx, sig_rx): """ Returns an aligned version of sig_tx and sig_rx by cropping, subsample alignment and correct phase offset """ # Coarse sample-level alignment c = np.abs(signal.correlate(sig_rx, sig_tx)) off_meas = np.argmax(c) - sig_tx.shape[0] + 1 off = int(abs(off_meas)) if off_meas > 0: sig_tx = sig_tx[:-off] sig_rx = sig_rx[off:] elif off_meas < 0: sig_tx = sig_tx[off:] sig_rx = sig_rx[:-off] if off % 2 == 1: sig_tx = sig_tx[:-1] sig_rx = sig_rx[:-1] # Fine subsample alignment and phase offset sig_rx = sa.subsample_align(sig_rx, sig_tx) sig_rx = sa.phase_align(sig_rx, sig_tx) return sig_tx, sig_rx class Capture: """Capture samples from ODR-DabMod""" def __init__(self, samplerate, port, num_samples_to_request): self.samplerate = samplerate self.sizeof_sample = 8 # complex floats self.port = port self.num_samples_to_request = num_samples_to_request # Before we run the samples through the model, we want to accumulate # them into bins depending on their amplitude, and keep only n_per_bin # samples to avoid that the polynomial gets overfitted in the low-amplitude # part, which is less interesting than the high-amplitude part, where # non-linearities become apparent. self.binning_start = 0.0 self.binning_end = 1.0 self.binning_n_bins = 64 # Number of bins between binning_start and binning_end self.binning_n_per_bin = 128 # Number of measurements pre bin self.target_median = 0.01 self.median_max = self.target_median * 1.4 self.median_min = self.target_median / 1.4 # axis 1: 0=tx, 1=rx self.accumulated_bins = [np.zeros((0, 2), dtype=np.complex64) for i in range(self.binning_n_bins)] def _recv_exact(self, sock, num_bytes): """Receive an exact number of bytes from a socket. This is a wrapper around sock.recv() that can return less than the number of requested bytes. Args: sock (socket): Socket to receive data from. num_bytes (int): Number of bytes that will be returned. """ bufs = [] while num_bytes > 0: b = sock.recv(num_bytes) if len(b) == 0: break num_bytes -= len(b) bufs.append(b) return b''.join(bufs) def receive_tcp(self): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(4) s.connect(('localhost', self.port)) logging.debug("Send version") s.sendall(b"\x01") logging.debug("Send request for {} samples".format(self.num_samples_to_request)) s.sendall(struct.pack("=I", self.num_samples_to_request)) logging.debug("Wait for TX metadata") num_samps, tx_second, tx_pps = struct.unpack("=III", self._recv_exact(s, 12)) tx_ts = tx_second + tx_pps / 16384000.0 if num_samps > 0: logging.debug("Receiving {} TX samples".format(num_samps)) txframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample) txframe = np.fromstring(txframe_bytes, dtype=np.complex64) else: txframe = np.array([], dtype=np.complex64) logging.debug("Wait for RX metadata") rx_second, rx_pps = struct.unpack("=II", self._recv_exact(s, 8)) rx_ts = rx_second + rx_pps / 16384000.0 if num_samps > 0: logging.debug("Receiving {} RX samples".format(num_samps)) rxframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample) rxframe = np.fromstring(rxframe_bytes, dtype=np.complex64) else: rxframe = np.array([], dtype=np.complex64) if logging.getLogger().getEffectiveLevel() == logging.DEBUG: logging.debug('txframe: min {}, max {}, median {}'.format( np.min(np.abs(txframe)), np.max(np.abs(txframe)), np.median(np.abs(txframe)))) logging.debug('rxframe: min {}, max {}, median {}'.format( np.min(np.abs(rxframe)), np.max(np.abs(rxframe)), np.median(np.abs(rxframe)))) logging.debug("Disconnecting") s.close() return txframe, tx_ts, rxframe, rx_ts def get_samples(self): """Connect to ODR-DabMod, retrieve TX and RX samples, load into numpy arrays, and return a tuple (txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median) """ txframe, tx_ts, rxframe, rx_ts = self.receive_tcp() # Normalize received signal with sent signal tx_median = np.median(np.abs(txframe)) if self.median_max < tx_median: raise ValueError("TX median {} too high, decrease digital_gain!".format(tx_median)) elif tx_median < self.median_min: raise ValueError("TX median {} too low, increase digital_gain!".format(tx_median)) else: rx_median = np.median(np.abs(rxframe)) rxframe = rxframe / rx_median * tx_median txframe_aligned, rxframe_aligned = align_samples(txframe, rxframe) self._bin_and_accumulate(txframe_aligned, rxframe_aligned) return txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median def bin_histogram(self): return [b.shape[0] for b in self.accumulated_bins] def _bin_and_accumulate(self, txframe, rxframe): """Bin the samples and extend the accumulated samples""" bin_edges = np.linspace(self.binning_start, self.binning_end, self.binning_n_bins) minsize = self.num_samples_to_request for i, (tx_start, tx_end) in enumerate(zip(bin_edges, bin_edges[1:])): txframe_abs = np.abs(txframe) indices = np.bitwise_and(tx_start < txframe_abs, txframe_abs <= tx_end) txsamples = np.asmatrix(txframe[indices]) rxsamples = np.asmatrix(rxframe[indices]) binned_sample_pairs = np.concatenate((txsamples, rxsamples)).T missing_in_bin = self.binning_n_per_bin - self.accumulated_bins[i].shape[0] num_to_append = min(missing_in_bin, binned_sample_pairs.shape[0]) print("Handling bin {} {}-{}, {} available, {} missing".format(i, tx_start, tx_end, binned_sample_pairs.shape[0], missing_in_bin)) if num_to_append: print("Appending {} to bin {} with shape {}".format(num_to_append, i, self.accumulated_bins[i].shape)) self.accumulated_bins[i] = np.concatenate((self.accumulated_bins[i], binned_sample_pairs[:num_to_append,...])) print("{} now has shape {}".format(i, self.accumulated_bins[i].shape))