# -*- coding: utf-8 -*- import datetime import os import logging logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename) from pynverse import inversefunc import numpy as np import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from sklearn.linear_model import Ridge class Model: """Calculates new coefficients using the measurement and the old coefficients""" def __init__(self, coefs_am, coefs_pm): self.coefs_am = coefs_am self.coefs_history = [coefs_am, ] self.mses = [0, ] self.errs = [0, ] self.coefs_pm = coefs_pm self.coefs_pm_history = [coefs_pm, ] self.errs_phase = [0, ] def sample_uniformly(self, txframe_aligned, rxframe_aligned, n_bins=4): """This function returns tx and rx samples in a way that the tx amplitudes have an approximate uniform distribution with respect to the txframe_aligned amplitudes""" txframe_aligned_abs = np.abs(txframe_aligned) ccdf_min = 0 ccdf_max = np.max(txframe_aligned_abs) tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs, bins=n_bins, range=(ccdf_min, ccdf_max)) tx_choice = np.zeros(tx_hist[-1] * n_bins, dtype=np.complex64) rx_choice = np.zeros(tx_hist[-1] * n_bins, dtype=np.complex64) n_choise = tx_hist[-1] for idx, bin in enumerate(tx_hist[:-1]): indices = np.where((txframe_aligned >= ccdf_edges[idx]) & (txframe_aligned <= ccdf_edges[idx+1]))[0] indices_choise = np.random.choice(indices, n_choise, replace=False) rx_choice[idx*n_choise:(idx+1)*n_choise] = rxframe_aligned[indices_choise] tx_choice[idx*n_choise:(idx+1)*n_choise] = txframe_aligned[indices_choise] return tx_choice, rx_choice def get_next_coefs(self, txframe_aligned, rxframe_aligned): tx_choice, rx_choice = self.sample_uniformly(txframe_aligned, rxframe_aligned) # Calculate new coefficients for AM/AM correction rx_abs = np.abs(rx_choice) rx_A = np.vstack([rx_abs, rx_abs ** 3, rx_abs ** 5, rx_abs ** 7, rx_abs ** 9, ]).T rx_dpd = np.sum(rx_A * self.coefs_am, axis=1) rx_dpd = rx_dpd * ( np.median(np.abs(tx_choice)) / np.median(np.abs(rx_dpd))) err = rx_dpd - np.abs(tx_choice) self.errs.append(np.mean(np.abs(err ** 2))) a_delta = np.linalg.lstsq(rx_A, err)[0] new_coefs = self.coefs_am - 0.1 * a_delta new_coefs = new_coefs * (self.coefs_am[0] / new_coefs[0]) logging.debug("a_delta {}".format(a_delta)) logging.debug("new coefs_am {}".format(new_coefs)) # Calculate new coefficients for AM/PM correction phase_diff_rad = (( (np.angle(tx_choice) - np.angle(rx_choice) + np.pi) % (2 * np.pi)) - np.pi ) tx_abs = np.abs(tx_choice) tx_abs_A = np.vstack([tx_abs, tx_abs ** 2, tx_abs ** 3, tx_abs ** 4, tx_abs ** 5, ]).T phase_dpd = np.sum(tx_abs_A * self.coefs_pm, axis=1) err_phase = phase_dpd - phase_diff_rad self.errs_phase.append(np.mean(np.abs(err_phase ** 2))) a_delta = np.linalg.lstsq(tx_abs_A, err_phase)[0] new_coefs_pm = self.coefs_pm - 0.1 * a_delta logging.debug("a_delta {}".format(a_delta)) logging.debug("new new_coefs_pm {}".format(new_coefs_pm)) def dpd_phase(tx): tx_abs = np.abs(tx) tx_A_complex = np.vstack([tx, tx * tx_abs ** 1, tx * tx_abs ** 2, tx * tx_abs ** 3, tx * tx_abs ** 4, ]).T tx_dpd = np.sum(tx_A_complex * self.coefs_pm, axis=1) return tx_dpd tx_range = np.linspace(0, 2) phase_range_dpd = dpd_phase(tx_range) tx_abs = np.abs(rx_choice) tx_A = np.vstack([tx_abs, tx_abs ** 3, tx_abs ** 5, tx_abs ** 7, tx_abs ** 9, ]).T tx_dpd = np.sum(tx_A * new_coefs, axis=1) tx_dpd_norm = tx_dpd * ( np.median(np.abs(tx_choice)) / np.median(np.abs(tx_dpd))) rx_A_complex = np.vstack([rx_choice, rx_choice * rx_abs ** 2, rx_choice * rx_abs ** 4, rx_choice * rx_abs ** 6, rx_choice * rx_abs ** 8, ]).T rx_post_distored = np.sum(rx_A_complex * self.coefs_am, axis=1) rx_post_distored = rx_post_distored * ( np.median(np.abs(tx_choice)) / np.median(np.abs(rx_post_distored))) mse = np.mean(np.abs((tx_choice - rx_post_distored) ** 2)) logging.debug("MSE: {}".format(mse)) self.mses.append(mse) def dpd(tx): tx_abs = np.abs(tx) tx_A_complex = np.vstack([tx, tx * tx_abs ** 2, tx * tx_abs ** 4, tx * tx_abs ** 6, tx * tx_abs ** 8, ]).T tx_dpd = np.sum(tx_A_complex * self.coefs_am, axis=1) return tx_dpd rx_range = np.linspace(0, 1, num=100) rx_range_dpd = dpd(rx_range) rx_range = rx_range[(rx_range_dpd > 0) & (rx_range_dpd < 2)] rx_range_dpd = rx_range_dpd[(rx_range_dpd > 0) & (rx_range_dpd < 2)] if logging.getLogger().getEffectiveLevel() == logging.DEBUG: logging.debug("txframe: min %f, max %f, median %f" % (np.min(np.abs(txframe_aligned)), np.max(np.abs(txframe_aligned)), np.median(np.abs(txframe_aligned)) )) logging.debug("rxframe: min %f, max %f, median %f" % (np.min(np.abs(rx_choice)), np.max(np.abs(rx_choice)), np.median(np.abs(rx_choice)) )) dt = datetime.datetime.now().isoformat() fig_path = logging_path + "/" + dt + "_Model.pdf" fig = plt.figure(figsize=(3*6, 1.5 * 6)) ax = plt.subplot(3,3,1) ax.plot(np.abs(txframe_aligned[:128]), label="TX sent", linestyle=":") ax.plot(np.abs(rxframe_aligned[:128]), label="RX received", color="red") ax.set_title("Synchronized Signals of Iteration {}".format(len(self.coefs_history))) ax.set_xlabel("Samples") ax.set_ylabel("Amplitude") ax.text(0, 0, "TX (max {:01.3f}, mean {:01.3f}, median {:01.3f})".format( np.max(np.abs(txframe_aligned)), np.mean(np.abs(txframe_aligned)), np.median(np.abs(txframe_aligned)) ), size = 8) ax.legend(loc=4) ax = plt.subplot(3,3,2) ax.plot(np.real(txframe_aligned[:128]), label="TX sent", linestyle=":") ax.plot(np.real(rxframe_aligned[:128]), label="RX received", color="red") ax.set_title("Synchronized Signals") ax.set_xlabel("Samples") ax.set_ylabel("Real Part") ax.legend(loc=4) ax = plt.subplot(3,3,3) ax.plot(np.abs(txframe_aligned[:128]), label="TX Frame", linestyle=":", linewidth=0.5) ax.plot(np.abs(rxframe_aligned[:128]), label="RX Frame", linestyle="--", linewidth=0.5) ax.plot(np.abs(rx_dpd[:128]), label="RX DPD Frame", linestyle="-.", linewidth=0.5) ax.plot(np.abs(tx_dpd_norm[:128]), label="TX DPD Frame Norm", linestyle="-.", linewidth=0.5) ax.legend(loc=4) ax.set_title("RX DPD") ax.set_xlabel("Samples") ax.set_ylabel("Amplitude") ax = plt.subplot(3,3,4) ax.scatter( np.abs(tx_choice[:1024]), np.abs(rx_choice[:1024]), s=0.1) ax.plot(rx_range_dpd / self.coefs_am[0], rx_range, linewidth=0.25) ax.set_title("Amplifier Characteristic") ax.set_xlabel("TX Amplitude") ax.set_ylabel("RX Amplitude") ax = plt.subplot(3,3,5) ax.scatter( np.abs(tx_choice[:1024]), phase_diff_rad[:1024] * 180 / np.pi, s=0.1 ) ax.plot(tx_range, phase_range_dpd * 180 / np.pi, linewidth=0.25) ax.set_title("Amplifier Characteristic") ax.set_xlabel("TX Amplitude") ax.set_ylabel("Phase Difference [deg]") ax = plt.subplot(3,3,6) ccdf_min, ccdf_max = 0, 1 tx_hist, ccdf_edges = np.histogram(np.abs(txframe_aligned), bins=60, range=(ccdf_min, ccdf_max)) tx_hist_normalized = tx_hist.astype(float)/np.sum(tx_hist) ccdf = 1.0 - np.cumsum(tx_hist_normalized) ax.semilogy(ccdf_edges[:-1], ccdf, label="CCDF") ax.semilogy(ccdf_edges[:-1], tx_hist_normalized, label="Histogram", drawstyle='steps') ax.legend(loc=4) ax.set_ylim(1e-5,2) ax.set_title("Complementary Cumulative Distribution Function") ax.set_xlabel("TX Amplitude") ax.set_ylabel("Ratio of Samples larger than x") ax = plt.subplot(3,3,7) coefs_history = np.array(self.coefs_history) for idx, coef_hist in enumerate(coefs_history.T): ax.plot(coef_hist, label="Coef {}".format(idx), linewidth=0.5) ax.legend(loc=4) ax.set_title("AM/AM Coefficient History") ax.set_xlabel("Iterations") ax.set_ylabel("Coefficient Value") ax = plt.subplot(3,3,8) coefs_history = np.array(self.coefs_pm_history) for idx, coef_hist in enumerate(coefs_history.T): ax.plot(coef_hist, label="Coef {}".format(idx), linewidth=0.5) ax.legend(loc=4) ax.set_title("AM/PM Coefficient History") ax.set_xlabel("Iterations") ax.set_ylabel("Coefficient Value") ax = plt.subplot(3,3,9) coefs_history = np.array(self.coefs_history) ax.plot(self.mses, label="MSE") ax.plot(self.errs, label="ERR") ax.legend(loc=4) ax.set_title("MSE History") ax.set_xlabel("Iterations") ax.set_ylabel("MSE") fig.tight_layout() fig.savefig(fig_path) fig.clf() self.coefs_am = new_coefs self.coefs_history.append(self.coefs_am) self.coefs_pm = new_coefs_pm self.coefs_pm_history.append(self.coefs_pm) return self.coefs_am, self.coefs_pm # The MIT License (MIT) # # Copyright (c) 2017 Andreas Steger # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.