# -*- coding: utf-8 -*- # # DPD Calculation Engine, # Extract statistic from data to use in Model # # http://www.opendigitalradio.org # Licence: The MIT License, see notice at the end of this file import numpy as np import pickle import matplotlib.pyplot as plt import datetime import os import logging logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename) def _check_input_extract(tx_dpd, rx_received): # Check data type assert tx_dpd[0].dtype == np.complex64, \ "tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype) assert rx_received[0].dtype == np.complex64, \ "rx_received is not complex64 but {}".format(rx_received[0].dtype) # Check if signals have same normalization normalization_error = np.abs(np.median(np.abs(tx_dpd)) - np.median(np.abs(rx_received))) / ( np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received))) assert normalization_error < 0.01, "Non normalized signals" class ExtractStatistic: """Calculate a low variance RX value for equally spaced tx values of a predefined range""" def __init__(self, c, plot=False): self.c = c self.tx_boundaries = np.linspace(c.ES_start, c.ES_end, c.ES_n_bins + 1) self.n_per_bin = c.ES_n_per_bin self.rx_values_lists = [] for i in range(c.ES_n_bins): self.rx_values_lists.append([]) self.tx_values_lists = [] for i in range(c.ES_n_bins): self.tx_values_lists.append([]) self.tx_values = self._tx_value_per_bin() self.rx_values = [] for i in range(c.ES_n_bins): self.rx_values.append(None) self.plot = plot def _plot_and_log(self): if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot: phase_diffs_values_lists = self._phase_diff_list_per_bin() phase_diffs_values = self._phase_diff_value_per_bin(phase_diffs_values_lists) dt = datetime.datetime.now().isoformat() fig_path = logging_path + "/" + dt + "_ExtractStatistic.png" sub_rows = 3 sub_cols = 1 fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6)) i_sub = 0 i_sub += 1 ax = plt.subplot(sub_rows, sub_cols, i_sub) ax.plot(self.tx_values, self.rx_values, label="Estimated Values", color="red") for i, tx_value in enumerate(self.tx_values): rx_values = self.rx_values_lists[i] ax.scatter(np.ones(len(rx_values)) * tx_value, np.abs(rx_values), s=0.1, color="black") ax.set_title("Extracted Statistic") ax.set_xlabel("TX Amplitude") ax.set_ylabel("RX Amplitude") ax.set_ylim(0, 0.8) ax.set_xlim(0, 1.1) ax.legend(loc=4) i_sub += 1 ax = plt.subplot(sub_rows, sub_cols, i_sub) ax.plot(self.tx_values, np.rad2deg(phase_diffs_values), label="Estimated Values", color="red") for i, tx_value in enumerate(self.tx_values): phase_diff = phase_diffs_values_lists[i] ax.scatter(np.ones(len(phase_diff)) * tx_value, np.rad2deg(phase_diff), s=0.1, color="black") ax.set_xlabel("TX Amplitude") ax.set_ylabel("Phase Difference") ax.set_ylim(-60,60) ax.set_xlim(0, 1.1) ax.legend(loc=4) num = [] for i, tx_value in enumerate(self.tx_values): rx_values = self.rx_values_lists[i] num.append(len(rx_values)) i_sub += 1 ax = plt.subplot(sub_rows, sub_cols, i_sub) ax.plot(num) ax.set_xlabel("TX Amplitude") ax.set_ylabel("Number of Samples") ax.set_ylim(0, self.n_per_bin * 1.2) fig.tight_layout() fig.savefig(fig_path) fig.clf() pickle.dump(self.rx_values_lists, open("/tmp/rx_values", "wb")) pickle.dump(self.tx_values, open("/tmp/tx_values", "wb")) def _rx_value_per_bin(self): rx_values = [] for values in self.rx_values_lists: rx_values.append(np.mean(np.abs(values))) return rx_values def _tx_value_per_bin(self): tx_values = [] for start, end in zip(self.tx_boundaries, self.tx_boundaries[1:]): tx_values.append(np.mean((start, end))) return tx_values def _phase_diff_list_per_bin(self): phase_values_lists = [] for tx_list, rx_list in zip(self.tx_values_lists, self.rx_values_lists): phase_diffs = [] for tx, rx in zip(tx_list, rx_list): phase_diffs.append(np.angle(rx * tx.conjugate())) phase_values_lists.append(phase_diffs) return phase_values_lists def _phase_diff_value_per_bin(self, phase_diffs_values_lists): phase_list = [] for values in phase_diffs_values_lists: phase_list.append(np.mean(values)) return phase_list def extract(self, tx_dpd, rx): _check_input_extract(tx_dpd, rx) tx_abs = np.abs(tx_dpd) for i, (tx_start, tx_end) in enumerate(zip(self.tx_boundaries, self.tx_boundaries[1:])): mask = (tx_abs > tx_start) & (tx_abs < tx_end) n_add = max(0, self.n_per_bin - len(self.rx_values_lists[i])) self.rx_values_lists[i] += \ list(rx[mask][:n_add]) self.tx_values_lists[i] += \ list(tx_dpd[mask][:n_add]) self.rx_values = self._rx_value_per_bin() self.tx_values = self._tx_value_per_bin() self._plot_and_log() n_per_bin = [len(values) for values in self.rx_values_lists] return np.array(self.tx_values, dtype=np.float32), \ np.array(self.rx_values, dtype=np.float32), \ n_per_bin # The MIT License (MIT) # # Copyright (c) 2017 Andreas Steger # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.