import numpy as np import scipy import matplotlib.pyplot as plt import src.subsample_align as sa from scipy import signal import logging class Dab_Util: """Collection of methods that can be applied to an array complex IQ samples of a DAB signal """ def __init__(self, sample_rate): """ :param sample_rate: sample rate [sample/sec] to use for calculations """ self.sample_rate = sample_rate self.dab_bandwidth = 1536000 #Bandwidth of a dab signal self.frame_ms = 96 #Duration of a Dab frame def lag(self, sig_orig, sig_rec): """ Find lag between two signals Args: sig_orig: The signal that has been sent sig_rec: The signal that has been recored """ off = sig_rec.shape[0] c = signal.correlate(sig_orig, sig_rec) return np.argmax(c) - off + 1 def lag_upsampling(self, sig_orig, sig_rec, n_up): sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up) sig_rec_up = signal.resample(sig_rec, sig_rec.shape[0] * n_up) l = self.lag(sig_orig_up, sig_rec_up) l_orig = float(l) / n_up return l_orig def subsample_align_upsampling(self, sig1, sig2, n_up=32): """ Returns an aligned version of sig1 and sig2 by cropping and subsample alignment Using upsampling """ assert(sig1.shape[0] == sig2.shape[0]) if sig1.shape[0] % 2 == 1: sig1 = sig1[:-1] sig2 = sig2[:-1] sig1_up = signal.resample(sig1, sig1.shape[0] * n_up) sig2_up = signal.resample(sig2, sig2.shape[0] * n_up) off_meas = self.lag_upsampling(sig2_up, sig1_up, n_up=1) off = int(abs(off_meas)) if off_meas > 0: sig1_up = sig1_up[:-off] sig2_up = sig2_up[off:] elif off_meas < 0: sig1_up = sig1_up[off:] sig2_up = sig2_up[:-off] sig1 = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64) sig2 = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64) return sig1, sig2 def subsample_align(self, sig1, sig2): """ Returns an aligned version of sig1 and sig2 by cropping and subsample alignment """ logging.debug("Sig1_orig: %d %s, Sig2_orig: %d %s" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype)) off_meas = self.lag_upsampling(sig2, sig1, n_up=1) off = int(abs(off_meas)) if off_meas > 0: sig1 = sig1[:-off] sig2 = sig2[off:] elif off_meas < 0: sig1 = sig1[off:] sig2 = sig2[:-off] if off % 2 == 1: sig1 = sig1[:-1] sig2 = sig2[:-1] sig2 = sa.subsample_align(sig2, sig1) logging.debug("Sig1_cut: %d %s, Sig2_cut: %d %s, off: %d" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype, off)) return sig1, sig2 def fromfile(self, filename, offset=0, length=None): if length is None: return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset) else: return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset, shape=length)