# -*- coding: utf-8 -*- import numpy as np import scipy import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import datetime import src.subsample_align as sa import src.phase_align as pa from scipy import signal import logging class Dab_Util: """Collection of methods that can be applied to an array complex IQ samples of a DAB signal """ def __init__(self, sample_rate): """ :param sample_rate: sample rate [sample/sec] to use for calculations """ self.sample_rate = sample_rate self.dab_bandwidth = 1536000 #Bandwidth of a dab signal self.frame_ms = 96 #Duration of a Dab frame def lag(self, sig_orig, sig_rec): """ Find lag between two signals Args: sig_orig: The signal that has been sent sig_rec: The signal that has been recored """ off = sig_rec.shape[0] c = np.abs(signal.correlate(sig_orig, sig_rec)) if logging.getLogger().getEffectiveLevel() == logging.DEBUG: corr_path = ('/tmp/tx_rx_corr_' + datetime.datetime.now().isoformat() + '.pdf') plt.plot(c, label="corr") plt.legend() plt.savefig(corr_path) plt.clf() return np.argmax(c) - off + 1 def lag_upsampling(self, sig_orig, sig_rec, n_up): if n_up != 1: sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up) sig_rec_up = signal.resample(sig_rec, sig_rec.shape[0] * n_up) else: sig_orig_up = sig_orig sig_rec_up = sig_rec l = self.lag(sig_orig_up, sig_rec_up) l_orig = float(l) / n_up return l_orig def subsample_align_upsampling(self, sig1, sig2, n_up=32): """ Returns an aligned version of sig1 and sig2 by cropping and subsample alignment Using upsampling """ assert(sig1.shape[0] == sig2.shape[0]) if sig1.shape[0] % 2 == 1: sig1 = sig1[:-1] sig2 = sig2[:-1] sig1_up = signal.resample(sig1, sig1.shape[0] * n_up) sig2_up = signal.resample(sig2, sig2.shape[0] * n_up) off_meas = self.lag_upsampling(sig2_up, sig1_up, n_up=1) off = int(abs(off_meas)) if off_meas > 0: sig1_up = sig1_up[:-off] sig2_up = sig2_up[off:] elif off_meas < 0: sig1_up = sig1_up[off:] sig2_up = sig2_up[:-off] sig1 = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64) sig2 = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64) return sig1, sig2 def subsample_align(self, sig1, sig2): """ Returns an aligned version of sig1 and sig2 by cropping and subsample alignment """ if logging.getLogger().getEffectiveLevel() == logging.DEBUG: dt = datetime.datetime.now().isoformat() txframe_path = ('/tmp/tx_0_' + dt + '.iq') sig1.tofile(txframe_path) rxframe_path = ('/tmp/rx_0_' + dt + '.iq') sig2.tofile(rxframe_path) logging.debug("Sig1_orig: %d %s, Sig2_orig: %d %s" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype)) off_meas = self.lag_upsampling(sig2, sig1, n_up=1) off = int(abs(off_meas)) if off_meas > 0: sig1 = sig1[:-off] sig2 = sig2[off:] elif off_meas < 0: sig1 = sig1[off:] sig2 = sig2[:-off] if off % 2 == 1: sig1 = sig1[:-1] sig2 = sig2[:-1] if logging.getLogger().getEffectiveLevel() == logging.DEBUG: txframe_path = ('/tmp/tx_1_' + dt + '.iq') sig1.tofile(txframe_path) rxframe_path = ('/tmp/rx_1_' + dt + '.iq') sig2.tofile(rxframe_path) sig2 = sa.subsample_align(sig2, sig1) if logging.getLogger().getEffectiveLevel() == logging.DEBUG: txframe_path = ('/tmp/tx_2_' + dt + '.iq') sig1.tofile(txframe_path) rxframe_path = ('/tmp/rx_2_' + dt + '.iq') sig2.tofile(rxframe_path) sig2 = pa.phase_align(sig2, sig1) sig2 = sa.subsample_align(sig2, sig1) sig2 = pa.phase_align(sig2, sig1) if logging.getLogger().getEffectiveLevel() == logging.DEBUG: txframe_path = ('/tmp/tx_3_' + dt + '.iq') sig1.tofile(txframe_path) rxframe_path = ('/tmp/rx_3_' + dt + '.iq') sig2.tofile(rxframe_path) logging.debug("Sig1_cut: %d %s, Sig2_cut: %d %s, off: %d" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype, off)) return sig1, sig2 def fromfile(self, filename, offset=0, length=None): if length is None: return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset) else: return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset, shape=length) # The MIT License (MIT) # # Copyright (c) 2017 Andreas Steger # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.