#!/usr/bin/env python # -*- coding: utf-8 -*- # # DPD Calculation Engine main file. # # http://www.opendigitalradio.org # Licence: The MIT License, see notice at the end of this file """This Python script is the main file for ODR-DabMod's DPD Computation Engine. This engine calculates and updates the parameter of the digital predistortion module of ODR-DabMod.""" import datetime import os import time import matplotlib matplotlib.use('GTKAgg') import logging dt = datetime.datetime.now().isoformat() logging_path = "/tmp/dpd_{}".format(dt).replace(".", "_").replace(":", "-") os.makedirs(logging_path) logging.basicConfig(format='%(asctime)s - %(module)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename='{}/dpd.log'.format(logging_path), filemode='w', level=logging.DEBUG) # also log up to INFO to console console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('%(asctime)s - %(module)s - %(levelname)s - %(message)s') # tell the handler to use this format console.setFormatter(formatter) # add the handler to the root logger logging.getLogger('').addHandler(console) import numpy as np import traceback import src.Measure as Measure import src.Model as Model import src.ExtractStatistic as ExtractStatistic import src.Model_Poly import src.Adapt as Adapt import src.Agc as Agc import src.TX_Agc as TX_Agc import src.Symbol_align import src.const import src.MER import argparse parser = argparse.ArgumentParser( description="DPD Computation Engine for ODR-DabMod") parser.add_argument('--port', default=50055, type=int, help='port of DPD server to connect to (default: 50055)', required=False) parser.add_argument('--rc-port', default=9400, type=int, help='port of ODR-DabMod ZMQ Remote Control to connect to (default: 9400)', required=False) parser.add_argument('--samplerate', default=8192000, type=int, help='Sample rate', required=False) parser.add_argument('--coefs', default='poly.coef', help='File with DPD coefficients, which will be read by ODR-DabMod', required=False) parser.add_argument('--txgain', default=73, help='TX Gain', required=False, type=int) parser.add_argument('--rxgain', default=30, help='TX Gain', required=False, type=int) parser.add_argument('--digital_gain', default=1, help='Digital Gain', required=False, type=float) parser.add_argument('--samps', default='81920', type=int, help='Number of samples to request from ODR-DabMod', required=False) parser.add_argument('-i', '--iterations', default=1, type=int, help='Number of iterations to run', required=False) parser.add_argument('-l', '--load-poly', help='Load existing polynomial', action="store_true") cli_args = parser.parse_args() port = cli_args.port port_rc = cli_args.rc_port coef_path = cli_args.coefs digital_gain = cli_args.digital_gain txgain = cli_args.txgain rxgain = cli_args.rxgain num_req = cli_args.samps samplerate = cli_args.samplerate num_iter = cli_args.iterations SA = src.Symbol_align.Symbol_align(samplerate) MER = src.MER.MER(samplerate) c = src.const.const(samplerate) meas = Measure.Measure(samplerate, port, num_req) extStat = ExtractStatistic.ExtractStatistic(c, plot=True) adapt = Adapt.Adapt(port_rc, coef_path) coefs_am, coefs_pm = adapt.get_coefs() model_poly = src.Model_Poly.Model_Poly(c, coefs_am, coefs_pm, plot=True) if not cli_args.load_poly: coefs_am, coefs_pm = model_poly.get_default_coefs() adapt.set_coefs(model_poly.coefs_am, model_poly.coefs_pm) adapt.set_digital_gain(digital_gain) adapt.set_txgain(txgain) adapt.set_rxgain(rxgain) tx_gain = adapt.get_txgain() rx_gain = adapt.get_rxgain() digital_gain = adapt.get_digital_gain() dpd_coefs_am, dpd_coefs_pm = adapt.get_coefs() logging.info( "TX gain {}, RX gain {}, dpd_coefs_am {}," " dpd_coefs_pm {}, digital_gain {}".format( tx_gain, rx_gain, dpd_coefs_am, dpd_coefs_pm, digital_gain ) ) tx_agc = TX_Agc.TX_Agc(adapt) # Automatic Gain Control agc = Agc.Agc(meas, adapt) agc.run() state = "measure" i = 0 while i < num_iter: try: # Measure if state == "measure": txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median = meas.get_samples() tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned) n_use = int(len(n_per_bin) * 0.6) tx = tx[:n_use] rx = rx[:n_use] phase_diff = phase_diff[:n_use] if all(c.ES_n_per_bin == np.array(n_per_bin)[0:n_use]): state = "model" else: state = "measure" # Model elif state == "model": coefs_am, coefs_pm = model_poly.get_next_coefs(tx, rx, phase_diff) del extStat extStat = ExtractStatistic.ExtractStatistic(c, plot=True) state = "adapt" # Adapt elif state == "adapt": adapt.set_coefs(coefs_am, coefs_pm) state = "measure" i += 1 except Exception as e: logging.warning("Iteration {} failed.".format(i)) logging.warning(traceback.format_exc()) # The MIT License (MIT) # # Copyright (c) 2017 Andreas Steger, Matthias P. Braendli # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.