#!/usr/bin/env python # -*- coding: utf-8 -*- # # DPD Calculation Engine main file. # # http://www.opendigitalradio.org # Licence: The MIT License, see notice at the end of this file """This Python script is the main file for ODR-DabMod's DPD Computation Engine. This engine calculates and updates the parameter of the digital predistortion module of ODR-DabMod.""" import datetime import os import matplotlib matplotlib.use('GTKAgg') import logging dt = datetime.datetime.now().isoformat() logging_path = "/tmp/dpd_{}".format(dt).replace(".", "_").replace(":", "-") os.makedirs(logging_path) logging.basicConfig(format='%(asctime)s - %(module)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename='{}/dpd.log'.format(logging_path), filemode='w', level=logging.DEBUG) # also log up to INFO to console console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('%(asctime)s - %(module)s - %(levelname)s - %(message)s') # tell the handler to use this format console.setFormatter(formatter) # add the handler to the root logger logging.getLogger('').addHandler(console) import numpy as np import traceback import src.Measure as Measure import src.Model as Model import src.ExtractStatistic as ExtractStatistic import src.Adapt as Adapt import src.Agc as Agc import src.TX_Agc as TX_Agc from src.Symbol_align import Symbol_align from src.Const import Const from src.MER import MER from src.Measure_Shoulders import Measure_Shoulders import argparse import src.Heuristics as Heur parser = argparse.ArgumentParser( description="DPD Computation Engine for ODR-DabMod") parser.add_argument('--port', default=50055, type=int, help='port of DPD server to connect to (default: 50055)', required=False) parser.add_argument('--rc-port', default=9400, type=int, help='port of ODR-DabMod ZMQ Remote Control to connect to (default: 9400)', required=False) parser.add_argument('--samplerate', default=8192000, type=int, help='Sample rate', required=False) parser.add_argument('--coefs', default='poly.coef', help='File with DPD coefficients, which will be read by ODR-DabMod', required=False) parser.add_argument('--txgain', default=-1, help='TX Gain, -1 to leave unchanged', required=False, type=int) parser.add_argument('--rxgain', default=30, help='TX Gain, -1 to leave unchanged', required=False, type=int) parser.add_argument('--digital_gain', default=1, help='Digital Gain', required=False, type=float) parser.add_argument('--target_median', default=0.05, help='target_median', required=False, type=float) parser.add_argument('--samps', default='81920', type=int, help='Number of samples to request from ODR-DabMod', required=False) parser.add_argument('-i', '--iterations', default=1, type=int, help='Number of iterations to run', required=False) parser.add_argument('-L', '--lut', help='Use lookup table instead of polynomial predistorter', action="store_true") parser.add_argument('--plot', help='Enable all plots, to be more selective choose plots in Const.py', action="store_true") cli_args = parser.parse_args() logging.info(cli_args) port = cli_args.port port_rc = cli_args.rc_port coef_path = cli_args.coefs digital_gain = cli_args.digital_gain num_req = cli_args.samps samplerate = cli_args.samplerate num_iter = cli_args.iterations target_median = cli_args.target_median rxgain = cli_args.rxgain txgain = cli_args.txgain plot = cli_args.plot c = Const(samplerate, target_median, plot) SA = Symbol_align(c) MER = MER(c) MS = Measure_Shoulders(c) meas = Measure.Measure(samplerate, port, num_req) extStat = ExtractStatistic.ExtractStatistic(c) adapt = Adapt.Adapt(port_rc, coef_path) if cli_args.lut: model = Model.Lut(c) else: model = Model.Poly(c) adapt.set_predistorter(model.get_dpd_data()) adapt.set_digital_gain(digital_gain) # Set RX Gain if rxgain == -1: rxgain = adapt.get_rxgain() else: adapt.set_rxgain(rxgain) # Set TX Gain if txgain == -1: txgain = adapt.get_txgain() else: adapt.set_txgain(txgain) tx_gain = adapt.get_txgain() rx_gain = adapt.get_rxgain() digital_gain = adapt.get_digital_gain() dpddata = adapt.get_predistorter() if dpddata[0] == "poly": coefs_am = dpddata[1] coefs_pm = dpddata[2] logging.info( "TX gain {}, RX gain {}, dpd_coefs_am {}," " dpd_coefs_pm {}, digital_gain {}".format( tx_gain, rx_gain, coefs_am, coefs_pm, digital_gain ) ) elif dpddata[0] == "lut": scalefactor = dpddata[1] lut = dpddata[2] logging.info( "TX gain {}, RX gain {}, LUT scalefactor {}," " LUT {}, digital_gain {}".format( tx_gain, rx_gain, scalefactor, lut, digital_gain ) ) else: logging.error("Unknown dpd data format {}".format(dpddata[0])) tx_agc = TX_Agc.TX_Agc(adapt, c) # Automatic Gain Control agc = Agc.Agc(meas, adapt, c) agc.run() state = "measure" i = 0 while i < num_iter: try: # Measure if state == 'measure': # Get Samples and check gain txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median = meas.get_samples() if tx_agc.adapt_if_necessary(txframe_aligned): continue # Extract usable data from measurement tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned) n_meas = Heur.get_n_meas(i) if extStat.n_meas >= n_meas: # Use as many measurements nr of runs state = 'model' else: state = 'measure' # Model elif state == 'model': # Calculate new model parameters and delete old measurements lr = Heur.get_learning_rate(i) model.train(tx, rx, phase_diff, lr=lr) dpddata = model.get_dpd_data() extStat = ExtractStatistic.ExtractStatistic(c) state = 'adapt' # Adapt elif state == 'adapt': adapt.set_predistorter(dpddata) state = 'report' # Report elif state == 'report': try: # Store all settings for pre-distortion, tx and rx adapt.dump() # Collect logging data off = SA.calc_offset(txframe_aligned) tx_mer = MER.calc_mer(txframe_aligned[off:off + c.T_U], debug_name='TX') rx_mer = MER.calc_mer(rxframe_aligned[off:off + c.T_U], debug_name='RX') mse = np.mean(np.abs((txframe_aligned - rxframe_aligned) ** 2)) tx_gain = adapt.get_txgain() rx_gain = adapt.get_rxgain() digital_gain = adapt.get_digital_gain() tx_median = np.median(np.abs(txframe_aligned)) rx_shoulder_tuple = MS.average_shoulders(rxframe_aligned) if c.MS_enable else None tx_shoulder_tuple = MS.average_shoulders(txframe_aligned) if c.MS_enable else None # Generic logging logging.info(list((name, eval(name)) for name in ['i', 'tx_mer', 'tx_shoulder_tuple', 'rx_mer', 'rx_shoulder_tuple', 'mse', 'tx_gain', 'digital_gain', 'rx_gain', 'rx_median', 'tx_median', 'lr', 'n_meas'])) # Model specific logging if dpddata[0] == 'poly': coefs_am = dpddata[1] coefs_pm = dpddata[2] logging.info('It {}: coefs_am {}'. format(i, coefs_am)) logging.info('It {}: coefs_pm {}'. format(i, coefs_pm)) elif dpddata[0] == 'lut': scalefactor = dpddata[1] lut = dpddata[2] logging.info('It {}: LUT scalefactor {}, LUT {}'. format(i, scalefactor, lut)) except: logging.error('Iteration {}: Report failed.'.format(i)) logging.error(traceback.format_exc()) i += 1 state = 'measure' except Exception as e: logging.error('Iteration {} failed.'.format(i)) logging.error(traceback.format_exc()) # The MIT License (MIT) # # Copyright (c) 2017 Andreas Steger # Copyright (c) 2017 Matthias P. Braendli # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.