#!/usr/bin/env python # -*- coding: utf-8 -*- # # DPD Calculation Engine, apply stored configuration. # # http://www.opendigitalradio.org # Licence: The MIT License, see notice at the end of this file """This Python script is the main file for ODR-DabMod's DPD Computation Engine. This engine calculates and updates the parameter of the digital predistortion module of ODR-DabMod.""" import datetime import os import matplotlib import glob import natsort matplotlib.use('GTKAgg') import logging dt = datetime.datetime.now().isoformat() logging_path = "/tmp/dpd_{}".format(dt).replace(".", "_").replace(":", "-") os.makedirs(logging_path) logging.basicConfig(format='%(asctime)s - %(module)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename='{}/dpd.log'.format(logging_path), filemode='w', level=logging.DEBUG) # also log up to INFO to console console = logging.StreamHandler() console.setLevel(logging.INFO) # set a format which is simpler for console use formatter = logging.Formatter('%(asctime)s - %(module)s - %(levelname)s - %(message)s') # tell the handler to use this format console.setFormatter(formatter) # add the handler to the root logger logging.getLogger('').addHandler(console) import src.Measure as Measure import src.Model as Model import src.ExtractStatistic as ExtractStatistic import src.Adapt as Adapt import src.RX_Agc as Agc import src.TX_Agc as TX_Agc import argparse import src.Const import src.Symbol_align import src.Measure_Shoulders import src.MER parser = argparse.ArgumentParser( description="DPD Computation Engine for ODR-DabMod") parser.add_argument('--port', default=50055, type=int, help='port of DPD server to connect to (default: 50055)', required=False) parser.add_argument('--rc-port', default=9400, type=int, help='port of ODR-DabMod ZMQ Remote Control to connect to (default: 9400)', required=False) parser.add_argument('--samplerate', default=8192000, type=int, help='Sample rate', required=False) parser.add_argument('--coefs', default='/tmp/poly.coef', help='File with DPD coefficients, which will be read by ODR-DabMod', required=False) parser.add_argument('--txgain', default=75, help='TX Gain', required=False, type=int) parser.add_argument('--rxgain', default=30, help='TX Gain', required=False, type=int) parser.add_argument('--digital_gain', default=1, help='Digital Gain', required=False, type=float) parser.add_argument('--samps', default='81920', type=int, help='Number of samples to request from ODR-DabMod', required=False) parser.add_argument('--target_median', default=0.1, help='target_median', required=False, type=float) parser.add_argument('--searchpath', default='./stored', type=str, help='Path to search .pkl files with stored configuration' 'for adapt', required=False) parser.add_argument('-L', '--lut', help='Use lookup table instead of polynomial predistorter', action="store_true") cli_args = parser.parse_args() port = cli_args.port port_rc = cli_args.rc_port coef_path = cli_args.coefs digital_gain = cli_args.digital_gain txgain = cli_args.txgain rxgain = cli_args.rxgain num_req = cli_args.samps samplerate = cli_args.samplerate searchpath = cli_args.searchpath target_median = cli_args.target_median c = src.Const.Const(samplerate, target_median, False) SA = src.Symbol_align.Symbol_align(c) MER = src.MER.MER(c) MS = src.Measure_Shoulders.Measure_Shoulders(c) meas = Measure.Measure(samplerate, port, num_req) extStat = ExtractStatistic.ExtractStatistic(c) adapt = Adapt.Adapt(port_rc, coef_path) dpddata = adapt.get_predistorter if cli_args.lut: model = Model.Lut(c) else: model = Model.Poly(c) adapt.set_predistorter(model.get_dpd_data()) adapt.set_digital_gain(digital_gain) adapt.set_txgain(txgain) adapt.set_rxgain(rxgain) tx_gain = adapt.get_txgain() rx_gain = adapt.get_rxgain() digital_gain = adapt.get_digital_gain() dpddata = adapt.get_predistorter if dpddata[0] == "poly": coefs_am = dpddata[1] coefs_pm = dpddata[2] logging.info( "TX gain {}, RX gain {}, dpd_coefs_am {}," " dpd_coefs_pm {}, digital_gain {}".format( tx_gain, rx_gain, coefs_am, coefs_pm, digital_gain ) ) elif dpddata[0] == "lut": scalefactor = dpddata[1] lut = dpddata[2] logging.info( "TX gain {}, RX gain {}, LUT scalefactor {}," " LUT {}, digital_gain {}".format( tx_gain, rx_gain, scalefactor, lut, digital_gain ) ) else: logging.error("Unknown dpd data format {}".format(dpddata[0])) tx_agc = TX_Agc.TX_Agc(adapt, c) # Automatic Gain Control agc = Agc.Agc(meas, adapt, c) agc.run() paths = natsort.natsorted(glob.glob(searchpath + "/*.pkl")) print(paths) for i, path in enumerate(paths): print(i, path) adapt.load(path) dpddata_after = adapt.get_predistorter coefs_am, coefs_pm = model.reset_coefs() adapt.set_predistorter(("poly", coefs_am, coefs_pm)) print("Loaded configuration without pre-distortion") raw_input("Key for pre-distortion ") adapt.set_predistorter(dpddata_after) print("Pre-distortion done") raw_input("Key for next ") # The MIT License (MIT) # # Copyright (c) 2017 Andreas Steger # Copyright (c) 2017 Matthias P. Braendli # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE.