#!/usr/bin/python # -*- coding: utf-8 -*- # # Print scope and spectrum from ODR-DabMod I/Q file # # The MIT License (MIT) # # Copyright (c) 2017 Matthias P. Braendli # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import sys import matplotlib.pyplot as plt import numpy as np rate=2048000 # T = 1/2048000 s # NULL symbol is 2656 T (about 1.3ms) long. T_NULL = 2656 # Full transmission frame in TM1 is 96ms = 196608 T. T_TF = 196608 num_skip_samples = 8 * T_TF num_analyse_samples = 2 * T_TF if len(sys.argv) < 2: print("Specify .iq file name") print("Expected format: complex float I/Q, 2048000 Sps") print("The input file must contain at least 10 transmission frames,") print("i.e. {} samples = {} seconds".format(T_TF * 10, T_TF * 10.0 / rate)) sys.exit(1) fd = open(sys.argv[1], 'rb') # The IQ files potentially have zero samples in the beginning, we need # to skip a few transmission frames source_data = np.fromfile(file=fd, dtype=np.complex64, count=num_skip_samples + num_analyse_samples) print("Read in {} samples".format(len(source_data))) source_data = source_data[num_skip_samples:] source_data_time = np.linspace(0, num_analyse_samples/rate, len(source_data)) print("Signal power: {} of {} samples".format(np.sum(np.abs(source_data**2)), len(source_data))) fft_size = 4096 plt.figure(figsize=(10,8)) plt.subplot(211) plt.title("Real part of signal") plt.plot(source_data_time, np.real(source_data)) signal_spectrum = np.abs(np.fft.fftshift(np.fft.fft(source_data[T_NULL:], fft_size))) freqs = np.fft.fftshift(np.fft.fftfreq(fft_size, d=1./rate)) plt.subplot(212) plt.title("Spectrum of {} samples after the NULL symbol".format(fft_size)) plt.semilogy(freqs, signal_spectrum) plt.show()