aboutsummaryrefslogtreecommitdiffstats
path: root/python/gui/dpd/Capture.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/gui/dpd/Capture.py')
-rw-r--r--python/gui/dpd/Capture.py253
1 files changed, 253 insertions, 0 deletions
diff --git a/python/gui/dpd/Capture.py b/python/gui/dpd/Capture.py
new file mode 100644
index 0000000..7d95f90
--- /dev/null
+++ b/python/gui/dpd/Capture.py
@@ -0,0 +1,253 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, Capture TX signal and RX feedback using ODR-DabMod's
+# DPD Server.
+#
+# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2018 Matthias P. Braendli
+#
+# http://www.opendigitalradio.org
+#
+# This file is part of ODR-DabMod.
+#
+# ODR-DabMod is free software: you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as
+# published by the Free Software Foundation, either version 3 of the
+# License, or (at your option) any later version.
+#
+# ODR-DabMod is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>.
+
+import socket
+import struct
+import os.path
+import logging
+import numpy as np
+from scipy import signal
+import matplotlib
+matplotlib.use('Agg')
+import matplotlib.pyplot as plt
+import io
+
+from . import Align as sa
+
+def correlation_coefficient(sig_tx, sig_rx):
+ return np.corrcoef(sig_tx, sig_rx)[0, 1]
+
+def align_samples(sig_tx, sig_rx):
+ """
+ Returns an aligned version of sig_tx and sig_rx by cropping, subsample alignment and
+ correct phase offset
+ """
+
+ # Coarse sample-level alignment
+ c = np.abs(signal.correlate(sig_rx, sig_tx))
+ off_meas = np.argmax(c) - sig_tx.shape[0] + 1
+ off = int(abs(off_meas))
+
+ if off_meas > 0:
+ sig_tx = sig_tx[:-off]
+ sig_rx = sig_rx[off:]
+ elif off_meas < 0:
+ sig_tx = sig_tx[off:]
+ sig_rx = sig_rx[:-off]
+
+ if off % 2 == 1:
+ sig_tx = sig_tx[:-1]
+ sig_rx = sig_rx[:-1]
+
+ # Fine subsample alignment and phase offset
+ sig_rx = sa.subsample_align(sig_rx, sig_tx)
+ sig_rx = sa.phase_align(sig_rx, sig_tx)
+ return sig_tx, sig_rx, abs(off_meas)
+
+class Capture:
+ """Capture samples from ODR-DabMod"""
+ def __init__(self, samplerate, port, num_samples_to_request, plot_dir):
+ self.samplerate = samplerate
+ self.sizeof_sample = 8 # complex floats
+ self.port = port
+ self.num_samples_to_request = num_samples_to_request
+ self.plot_dir = plot_dir
+
+ # Before we run the samples through the model, we want to accumulate
+ # them into bins depending on their amplitude, and keep only n_per_bin
+ # samples to avoid that the polynomial gets overfitted in the low-amplitude
+ # part, which is less interesting than the high-amplitude part, where
+ # non-linearities become apparent.
+ self.binning_n_bins = 64 # Number of bins between binning_start and binning_end
+ self.binning_n_per_bin = 128 # Number of measurements pre bin
+
+ self.rx_normalisation = 1.0
+
+ self.clear_accumulated()
+
+ def clear_accumulated(self):
+ self.binning_start = 0.0
+ self.binning_end = 1.0
+
+ # axis 0: bins
+ # axis 1: 0=tx, 1=rx
+ self.accumulated_bins = [np.zeros((0, 2), dtype=np.complex64) for i in range(self.binning_n_bins)]
+
+ def _recv_exact(self, sock, num_bytes):
+ """Receive an exact number of bytes from a socket. This is
+ a wrapper around sock.recv() that can return less than the number
+ of requested bytes.
+
+ Args:
+ sock (socket): Socket to receive data from.
+ num_bytes (int): Number of bytes that will be returned.
+ """
+ bufs = []
+ while num_bytes > 0:
+ b = sock.recv(num_bytes)
+ if len(b) == 0:
+ break
+ num_bytes -= len(b)
+ bufs.append(b)
+ return b''.join(bufs)
+
+ def receive_tcp(self):
+ s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
+ s.settimeout(4)
+ s.connect(('localhost', self.port))
+
+ logging.debug("Send version")
+ s.sendall(b"\x01")
+
+ logging.debug("Send request for {} samples".format(self.num_samples_to_request))
+ s.sendall(struct.pack("=I", self.num_samples_to_request))
+
+ logging.debug("Wait for TX metadata")
+ num_samps, tx_second, tx_pps = struct.unpack("=III", self._recv_exact(s, 12))
+ tx_ts = tx_second + tx_pps / 16384000.0
+
+ if num_samps > 0:
+ logging.debug("Receiving {} TX samples".format(num_samps))
+ txframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample)
+ txframe = np.fromstring(txframe_bytes, dtype=np.complex64)
+ else:
+ txframe = np.array([], dtype=np.complex64)
+
+ logging.debug("Wait for RX metadata")
+ rx_second, rx_pps = struct.unpack("=II", self._recv_exact(s, 8))
+ rx_ts = rx_second + rx_pps / 16384000.0
+
+ if num_samps > 0:
+ logging.debug("Receiving {} RX samples".format(num_samps))
+ rxframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample)
+ rxframe = np.fromstring(rxframe_bytes, dtype=np.complex64)
+ else:
+ rxframe = np.array([], dtype=np.complex64)
+
+ if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
+ logging.debug('txframe: min {}, max {}, median {}'.format(
+ np.min(np.abs(txframe)),
+ np.max(np.abs(txframe)),
+ np.median(np.abs(txframe))))
+
+ logging.debug('rxframe: min {}, max {}, median {}'.format(
+ np.min(np.abs(rxframe)),
+ np.max(np.abs(rxframe)),
+ np.median(np.abs(rxframe))))
+
+ logging.debug("Disconnecting")
+ s.close()
+
+ return txframe, tx_ts, rxframe, rx_ts
+
+ def _plot_spectrum(self, signal, filename, title):
+ fig = plt.figure()
+ ax = plt.subplot(1, 1, 1)
+
+ fft = np.fft.fftshift(np.fft.fft(signal))
+ fft_db = 20 * np.log10(np.abs(fft))
+
+ ax.plot(fft_db)
+ ax.set_title(title)
+ fig.tight_layout()
+ fig.savefig(os.path.join(self.plot_dir, filename))
+ plt.close(fig)
+
+ def calibrate(self):
+ txframe, tx_ts, rxframe, rx_ts = self.receive_tcp()
+
+ # Normalize received signal with sent signal
+ tx_median = np.median(np.abs(txframe))
+ rx_median = np.median(np.abs(rxframe))
+ self.rx_normalisation = tx_median / rx_median
+
+ rxframe = rxframe * self.rx_normalisation
+ txframe_aligned, rxframe_aligned, coarse_offset = align_samples(txframe, rxframe)
+
+ self._plot_spectrum(rxframe[:8192], "rxframe.png", "RX Frame")
+ self._plot_spectrum(txframe[:8192], "txframe.png", "RX Frame")
+
+ return tx_ts, tx_median, rx_ts, rx_median, np.abs(coarse_offset), correlation_coefficient(txframe_aligned, rxframe_aligned)
+
+ def get_samples(self):
+ """Connect to ODR-DabMod, retrieve TX and RX samples, load
+ into numpy arrays, and return a tuple
+ (txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median)
+ """
+
+ txframe, tx_ts, rxframe, rx_ts = self.receive_tcp()
+
+ # Normalize received signal with calibrated normalisation
+ rxframe = rxframe * self.rx_normalisation
+ txframe_aligned, rxframe_aligned, coarse_offset = align_samples(txframe, rxframe)
+ self._bin_and_accumulate(txframe_aligned, rxframe_aligned)
+ return txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median
+
+ def bin_histogram(self):
+ return [b.shape[0] for b in self.accumulated_bins]
+
+ def pointcloud_png(self):
+ fig = plt.figure()
+ ax = plt.subplot(1, 1, 1)
+ for b in self.accumulated_bins:
+ if b:
+ ax.scatter(
+ np.abs(b[0]),
+ np.abs(b[1]),
+ s=0.1,
+ color="black")
+ ax.set_title("Captured and Binned Samples")
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("RX Amplitude")
+ ax.set_ylim(0, 0.8)
+ ax.set_xlim(0, 1.1)
+ ax.legend(loc=4)
+ fig.tight_layout()
+ fig.savefig(os.path.join(self.plot_dir, "pointcloud.png"))
+ plt.close(fig)
+
+ def _bin_and_accumulate(self, txframe, rxframe):
+ """Bin the samples and extend the accumulated samples"""
+
+ bin_edges = np.linspace(self.binning_start, self.binning_end, self.binning_n_bins)
+
+ minsize = self.num_samples_to_request
+
+ for i, (tx_start, tx_end) in enumerate(zip(bin_edges, bin_edges[1:])):
+ txframe_abs = np.abs(txframe)
+ indices = np.bitwise_and(tx_start < txframe_abs, txframe_abs <= tx_end)
+ txsamples = np.asmatrix(txframe[indices])
+ rxsamples = np.asmatrix(rxframe[indices])
+ binned_sample_pairs = np.concatenate((txsamples, rxsamples)).T
+
+ missing_in_bin = self.binning_n_per_bin - self.accumulated_bins[i].shape[0]
+ num_to_append = min(missing_in_bin, binned_sample_pairs.shape[0])
+ print("Handling bin {} {}-{}, {} available, {} missing".format(i, tx_start, tx_end, binned_sample_pairs.shape[0], missing_in_bin))
+ if num_to_append:
+ print("Appending {} to bin {} with shape {}".format(num_to_append, i, self.accumulated_bins[i].shape))
+
+ self.accumulated_bins[i] = np.concatenate((self.accumulated_bins[i], binned_sample_pairs[:num_to_append,...]))
+ print("{} now has shape {}".format(i, self.accumulated_bins[i].shape))
+