diff options
Diffstat (limited to 'python/gui/dpd/Align.py')
-rw-r--r-- | python/gui/dpd/Align.py | 166 |
1 files changed, 166 insertions, 0 deletions
diff --git a/python/gui/dpd/Align.py b/python/gui/dpd/Align.py new file mode 100644 index 0000000..1634ec8 --- /dev/null +++ b/python/gui/dpd/Align.py @@ -0,0 +1,166 @@ +# -*- coding: utf-8 -*- +# +# DPD Computation Engine, utility to do subsample alignment. +# +# Copyright (c) 2017 Andreas Steger +# Copyright (c) 2018 Matthias P. Braendli +# +# http://www.opendigitalradio.org +# +# This file is part of ODR-DabMod. +# +# ODR-DabMod is free software: you can redistribute it and/or modify +# it under the terms of the GNU General Public License as +# published by the Free Software Foundation, either version 3 of the +# License, or (at your option) any later version. +# +# ODR-DabMod is distributed in the hope that it will be useful, +# but WITHOUT ANY WARRANTY; without even the implied warranty of +# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +# GNU General Public License for more details. +# +# You should have received a copy of the GNU General Public License +# along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>. +import datetime +import os +import numpy as np +from scipy import optimize +import matplotlib.pyplot as plt + +def gen_omega(length): + if (length % 2) == 1: + raise ValueError("Needs an even length array.") + + halflength = int(length / 2) + factor = 2.0 * np.pi / length + + omega = np.zeros(length, dtype=np.float) + for i in range(halflength): + omega[i] = factor * i + + for i in range(halflength, length): + omega[i] = factor * (i - length) + + return omega + + +def subsample_align(sig, ref_sig, plot_location=None): + """Do subsample alignment for sig relative to the reference signal + ref_sig. The delay between the two must be less than sample + + Returns the aligned signal""" + + n = len(sig) + if (n % 2) == 1: + raise ValueError("Needs an even length signal.") + halflen = int(n / 2) + + fft_sig = np.fft.fft(sig) + + omega = gen_omega(n) + + def correlate_for_delay(tau): + # A subsample offset between two signals corresponds, in the frequency + # domain, to a linearly increasing phase shift, whose slope + # corresponds to the delay. + # + # Here, we build this phase shift in rotate_vec, and multiply it with + # our signal. + + rotate_vec = np.exp(1j * tau * omega) + # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the + # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which + # is both the maximum positive and negative frequency. + # I don't remember why we handle it differently. + rotate_vec[halflen] = np.cos(np.pi * tau) + + corr_sig = np.fft.ifft(rotate_vec * fft_sig) + + return -np.abs(np.sum(np.conj(corr_sig) * ref_sig)) + + optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1, 1), method='bounded', + options={'disp': True}) + + if optim_result.success: + best_tau = optim_result.x + + if plot_location is not None: + corr = np.vectorize(correlate_for_delay) + ixs = np.linspace(-1, 1, 100) + taus = corr(ixs) + + dt = datetime.datetime.now().isoformat() + tau_path = (plot_location + "/" + dt + "_tau.png") + plt.plot(ixs, taus) + plt.title("Subsample correlation, minimum is best: {}".format(best_tau)) + plt.savefig(tau_path) + plt.close() + + # Prepare rotate_vec = fft_sig with rotated phase + rotate_vec = np.exp(1j * best_tau * omega) + rotate_vec[halflen] = np.cos(np.pi * best_tau) + return np.fft.ifft(rotate_vec * fft_sig).astype(np.complex64) + else: + # print("Could not optimize: " + optim_result.message) + return np.zeros(0, dtype=np.complex64) + +def phase_align(sig, ref_sig, plot_location=None): + """Do phase alignment for sig relative to the reference signal + ref_sig. + + Returns the aligned signal""" + + angle_diff = (np.angle(sig) - np.angle(ref_sig)) % (2. * np.pi) + + real_diffs = np.cos(angle_diff) + imag_diffs = np.sin(angle_diff) + + if plot_location is not None: + dt = datetime.datetime.now().isoformat() + fig_path = plot_location + "/" + dt + "_phase_align.png" + + plt.subplot(511) + plt.hist(angle_diff, bins=60, label="Angle Diff") + plt.xlabel("Angle") + plt.ylabel("Count") + plt.legend(loc=4) + + plt.subplot(512) + plt.hist(real_diffs, bins=60, label="Real Diff") + plt.xlabel("Real Part") + plt.ylabel("Count") + plt.legend(loc=4) + + plt.subplot(513) + plt.hist(imag_diffs, bins=60, label="Imaginary Diff") + plt.xlabel("Imaginary Part") + plt.ylabel("Count") + plt.legend(loc=4) + + plt.subplot(514) + plt.plot(np.angle(ref_sig[:128]), label="ref_sig") + plt.plot(np.angle(sig[:128]), label="sig") + plt.xlabel("Angle") + plt.ylabel("Sample") + plt.legend(loc=4) + + real_diff = np.median(real_diffs) + imag_diff = np.median(imag_diffs) + + angle = np.angle(real_diff + 1j * imag_diff) + + #logging.debug( "Compensating phase by {} rad, {} degree. real median {}, imag median {}".format( angle, angle*180./np.pi, real_diff, imag_diff)) + sig = sig * np.exp(1j * -angle) + + if plot_location is not None: + plt.subplot(515) + plt.plot(np.angle(ref_sig[:128]), label="ref_sig") + plt.plot(np.angle(sig[:128]), label="sig") + plt.xlabel("Angle") + plt.ylabel("Sample") + plt.legend(loc=4) + plt.tight_layout() + plt.savefig(fig_path) + plt.close() + + return sig |