aboutsummaryrefslogtreecommitdiffstats
path: root/python/dpd
diff options
context:
space:
mode:
Diffstat (limited to 'python/dpd')
-rw-r--r--python/dpd/Adapt.py291
-rw-r--r--python/dpd/ExtractStatistic.py37
-rw-r--r--python/dpd/GlobalConfig.py11
-rw-r--r--python/dpd/Measure.py36
-rw-r--r--python/dpd/Model_AM.py122
-rw-r--r--python/dpd/Model_PM.py124
-rw-r--r--python/dpd/Model_Poly.py147
-rw-r--r--python/dpd/RX_Agc.py39
8 files changed, 312 insertions, 495 deletions
diff --git a/python/dpd/Adapt.py b/python/dpd/Adapt.py
index 840aee9..a30f0c8 100644
--- a/python/dpd/Adapt.py
+++ b/python/dpd/Adapt.py
@@ -9,263 +9,184 @@ This module is used to change settings of ODR-DabMod using
the ZMQ remote control socket.
"""
-import zmq
import logging
import numpy as np
-import os
-import datetime
+import os.path
import pickle
+from lib import zmqrc
+from typing import List
LUT_LEN = 32
FORMAT_POLY = 1
FORMAT_LUT = 2
-def _write_poly_coef_file(coefs_am, coefs_pm, path):
- assert (len(coefs_am) == len(coefs_pm))
+def _write_poly_coef_file(coefs_am: List[float], coefs_pm: List[float], path: str) -> None:
+ assert len(coefs_am) == len(coefs_pm)
- f = open(path, 'w')
- f.write("{}\n{}\n".format(FORMAT_POLY, len(coefs_am)))
- for coef in coefs_am:
- f.write("{}\n".format(coef))
- for coef in coefs_pm:
- f.write("{}\n".format(coef))
- f.close()
+ with open(path, 'w') as f:
+ f.write("{}\n{}\n".format(FORMAT_POLY, len(coefs_am)))
+ for coef in coefs_am:
+ f.write("{}\n".format(coef))
+ for coef in coefs_pm:
+ f.write("{}\n".format(coef))
-def _write_lut_file(scalefactor, lut, path):
- assert (len(lut) == LUT_LEN)
+def _write_lut_file(scalefactor: float, lut: List[complex], path: str) -> None:
+ assert len(lut) == LUT_LEN
- f = open(path, 'w')
- f.write("{}\n{}\n".format(FORMAT_LUT, scalefactor))
- for coef in lut:
- f.write("{}\n{}\n".format(coef.real, coef.imag))
- f.close()
+ with open(path, 'w') as f:
+ f.write("{}\n{}\n".format(FORMAT_LUT, scalefactor))
+ for coef in lut:
+ f.write("{}\n{}\n".format(coef.real, coef.imag))
-def dpddata_to_str(dpddata):
+def dpddata_to_str(dpddata) -> str:
if dpddata[0] == "poly":
coefs_am = dpddata[1]
coefs_pm = dpddata[2]
- return "dpd_coefs_am {}, dpd_coefs_pm {}".format(
+ return "Poly: AM/AM {}, AM/PM {}".format(
coefs_am, coefs_pm)
elif dpddata[0] == "lut":
scalefactor = dpddata[1]
lut = dpddata[2]
- return "LUT scalefactor {}, LUT {}".format(
+ return "LUT: scalefactor {}, LUT {}".format(
scalefactor, lut)
else:
raise ValueError("Unknown dpddata type {}".format(dpddata[0]))
class Adapt:
- """Uses the ZMQ remote control to change parameters of the DabMod
+ """Uses the ZMQ remote control to change parameters of the DabMod """
- Parameters
- ----------
- port : int
- Port at which the ODR-DabMod is listening to connect the
- ZMQ remote control.
- """
-
- def __init__(self, port, coef_path, plot_location):
+ def __init__(self, port: int, coef_path: str, plot_location: str):
logging.debug("Instantiate Adapt object")
- self.port = port
- self.coef_path = coef_path
- self.plot_location = plot_location
- self.host = "localhost"
- self._context = zmq.Context()
-
- def _connect(self):
- """Establish the connection to ODR-DabMod using
- a ZMQ socket that is in request mode (Client).
- Returns a socket"""
- sock = self._context.socket(zmq.REQ)
- poller = zmq.Poller()
- poller.register(sock, zmq.POLLIN)
-
- sock.connect("tcp://%s:%d" % (self.host, self.port))
-
- sock.send(b"ping")
-
- socks = dict(poller.poll(1000))
- if socks:
- if socks.get(sock) == zmq.POLLIN:
- data = [el.decode() for el in sock.recv_multipart()]
-
- if data != ['ok']:
- raise RuntimeError(
- "Invalid ZMQ RC answer to 'ping' at %s %d: %s" %
- (self.host, self.port, data))
- else:
- sock.close(linger=10)
- raise RuntimeError(
- "ZMQ RC does not respond to 'ping' at %s %d" %
- (self.host, self.port))
-
- return sock
-
- def send_receive(self, message):
- """Send a message to ODR-DabMod. It always
- returns the answer ODR-DabMod sends back.
+ self._port = port
+ self._coef_path = coef_path
+ self._plot_location = plot_location
+ self._host = "localhost"
+ self._mod_rc = zmqrc.ModRemoteControl(self._host, self._port)
- An example message could be
- "get sdr txgain" or "set sdr txgain 50"
-
- Parameter
- ---------
- message : str
- The message string that will be sent to the receiver.
- """
- sock = self._connect()
- logging.debug("Send message: %s" % message)
- msg_parts = message.split(" ")
- for i, part in enumerate(msg_parts):
- if i == len(msg_parts) - 1:
- f = 0
- else:
- f = zmq.SNDMORE
-
- sock.send(part.encode(), flags=f)
-
- data = [el.decode() for el in sock.recv_multipart()]
- logging.debug("Received message: %s" % message)
- return data
-
- def set_txgain(self, gain):
- """Set a new txgain for the ODR-DabMod.
-
- Parameters
- ----------
- gain : int
- new TX gain, in the same format as ODR-DabMod's config file
- """
+ def set_txgain(self, gain : float) -> None:
# TODO this is specific to the B200
if gain < 0 or gain > 89:
raise ValueError("Gain has to be in [0,89]")
- return self.send_receive("set sdr txgain %.4f" % float(gain))
+ self._mod_rc.set_param_value("sdr", "txgain", "%.4f" % float(gain))
- def get_txgain(self):
- """Get the txgain value in dB for the ODR-DabMod."""
- # TODO handle failure
- return float(self.send_receive("get sdr txgain")[0])
+ def get_txgain(self) -> float:
+ """Get the txgain value in dB, or -1 in case of error"""
+ try:
+ return float(self._mod_rc.get_param_value("sdr", "txgain"))
+ except ValueError as e:
+ logging.warning(f"Adapt: get_txgain error: {e}")
+ return -1.0
- def set_rxgain(self, gain):
- """Set a new rxgain for the ODR-DabMod.
-
- Parameters
- ----------
- gain : int
- new RX gain, in the same format as ODR-DabMod's config file
- """
+ def set_rxgain(self, gain: float) -> None:
# TODO this is specific to the B200
if gain < 0 or gain > 89:
raise ValueError("Gain has to be in [0,89]")
- return self.send_receive("set sdr rxgain %.4f" % float(gain))
-
- def get_rxgain(self):
- """Get the rxgain value in dB for the ODR-DabMod."""
- # TODO handle failure
- return float(self.send_receive("get sdr rxgain")[0])
-
- def set_digital_gain(self, gain):
- """Set a new rxgain for the ODR-DabMod.
-
- Parameters
- ----------
- gain : int
- new RX gain, in the same format as ODR-DabMod's config file
- """
- msg = "set gain digital %.5f" % gain
- return self.send_receive(msg)
-
- def get_digital_gain(self):
- """Get the rxgain value in dB for the ODR-DabMod."""
- # TODO handle failure
- return float(self.send_receive("get gain digital")[0])
+ self._mod_rc.set_param_value("sdr", "rxgain", "%.4f" % float(gain))
+
+ def get_rxgain(self) -> float:
+ """Get the rxgain value in dB, or -1 in case of error"""
+ try:
+ return float(self._mod_rc.get_param_value("sdr", "rxgain"))
+ except ValueError as e:
+ logging.warning(f"Adapt: get_rxgain error: {e}")
+ return -1.0
+
+ def set_digital_gain(self, gain: float) -> None:
+ self._mod_rc.set_param_value("gain", "digital", "%.5f" % float(gain))
+
+ def get_digital_gain(self) -> float:
+ """Get the digital gain value in linear scale, or -1 in case
+ of error"""
+ try:
+ return float(self._mod_rc.get_param_value("gain", "digital"))
+ except ValueError as e:
+ logging.warning(f"Adapt: get_digital_gain error: {e}")
+ return -1.0
def get_predistorter(self):
"""Load the coefficients from the file in the format given in the README,
return ("poly", [AM coef], [PM coef]) or ("lut", scalefactor, [LUT entries])
"""
- f = open(self.coef_path, 'r')
- lines = f.readlines()
- predistorter_format = int(lines[0])
- if predistorter_format == FORMAT_POLY:
- coefs_am_out = []
- coefs_pm_out = []
- n_coefs = int(lines[1])
- coefs = [float(l) for l in lines[2:]]
- i = 0
- for c in coefs:
- if i < n_coefs:
- coefs_am_out.append(c)
- elif i < 2 * n_coefs:
- coefs_pm_out.append(c)
- else:
- raise ValueError(
- 'Incorrect coef file format: too many'
- ' coefficients in {}, should be {}, coefs are {}'
- .format(self.coef_path, n_coefs, coefs))
- i += 1
- f.close()
- return 'poly', coefs_am_out, coefs_pm_out
- elif predistorter_format == FORMAT_LUT:
- scalefactor = int(lines[1])
- coefs = np.array([float(l) for l in lines[2:]], dtype=np.float32)
- coefs = coefs.reshape((-1, 2))
- lut = coefs[..., 0] + 1j * coefs[..., 1]
- if len(lut) != LUT_LEN:
- raise ValueError("Incorrect number of LUT entries ({} expected {})".format(len(lut), LUT_LEN))
- return 'lut', scalefactor, lut
- else:
- raise ValueError("Unknown predistorter format {}".format(predistorter_format))
+ with open(self._coef_path, 'r') as f:
+ lines = f.readlines()
+ predistorter_format = int(lines[0])
+ if predistorter_format == FORMAT_POLY:
+ coefs_am_out = []
+ coefs_pm_out = []
+ n_coefs = int(lines[1])
+ coefs = [float(l) for l in lines[2:]]
+ for i, c in enumerate(coefs):
+ if i < n_coefs:
+ coefs_am_out.append(c)
+ elif i < 2 * n_coefs:
+ coefs_pm_out.append(c)
+ else:
+ raise ValueError(
+ 'Incorrect coef file format: too many'
+ ' coefficients in {}, should be {}, coefs are {}'
+ .format(self._coef_path, n_coefs, coefs))
+ return 'poly', coefs_am_out, coefs_pm_out
+ elif predistorter_format == FORMAT_LUT:
+ scalefactor = int(lines[1])
+ coefs = np.array([float(l) for l in lines[2:]], dtype=np.float32)
+ coefs = coefs.reshape((-1, 2))
+ lut = coefs[..., 0] + 1j * coefs[..., 1]
+ if len(lut) != LUT_LEN:
+ raise ValueError("Incorrect number of LUT entries ({} expected {})".format(len(lut), LUT_LEN))
+ return 'lut', scalefactor, lut
+ else:
+ raise ValueError("Unknown predistorter format {}".format(predistorter_format))
- def set_predistorter(self, dpddata):
+ def set_predistorter(self, dpddata) -> None:
"""Update the predistorter data in the modulator. Takes the same
tuple format as argument than the one returned get_predistorter()"""
if dpddata[0] == "poly":
coefs_am = dpddata[1]
coefs_pm = dpddata[2]
- _write_poly_coef_file(coefs_am, coefs_pm, self.coef_path)
+ _write_poly_coef_file(coefs_am, coefs_pm, self._coef_path)
elif dpddata[0] == "lut":
scalefactor = dpddata[1]
lut = dpddata[2]
- _write_lut_file(scalefactor, lut, self.coef_path)
+ _write_lut_file(scalefactor, lut, self._coef_path)
else:
raise ValueError("Unknown predistorter '{}'".format(dpddata[0]))
- self.send_receive("set memlesspoly coeffile {}".format(self.coef_path))
+ self._mod_rc.set_param_value("memlesspoly", "coeffile", self._coef_path)
- def dump(self, path=None):
+ def dump(self, path: str) -> None:
"""Backup current settings to a file"""
- dt = datetime.datetime.now().isoformat()
- if path is None:
- if self.plot_location is not None:
- path = self.plot_location + "/" + dt + "_adapt.pkl"
- else:
- raise Exception("Cannot dump Adapt without either plot_location or path set")
+
d = {
"txgain": self.get_txgain(),
"rxgain": self.get_rxgain(),
"digital_gain": self.get_digital_gain(),
- "predistorter": self.get_predistorter()
+ "dpddata": self.get_predistorter()
}
+
with open(path, "wb") as f:
pickle.dump(d, f)
- return path
-
- def load(self, path):
+ def restore(self, path: str):
"""Restore settings from a file"""
with open(path, "rb") as f:
d = pickle.load(f)
- self.set_txgain(d["txgain"])
+ self.set_txgain(0)
+
+ # If any of the following fail, we will be running
+ # with the safe value of txgain=0
self.set_digital_gain(d["digital_gain"])
self.set_rxgain(d["rxgain"])
- self.set_predistorter(d["predistorter"])
+ self.set_predistorter(d["dpddata"])
+ self.set_txgain(d["txgain"])
+
+ return d
# The MIT License (MIT)
#
-# Copyright (c) 2017 Andreas Steger, Matthias P. Braendli
+# Copyright (c) 2019 Matthias P. Braendli
+# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
diff --git a/python/dpd/ExtractStatistic.py b/python/dpd/ExtractStatistic.py
index 639513a..3518dba 100644
--- a/python/dpd/ExtractStatistic.py
+++ b/python/dpd/ExtractStatistic.py
@@ -38,14 +38,16 @@ class ExtractStatistic:
"""Calculate a low variance RX value for equally spaced tx values
of a predefined range"""
- def __init__(self, c):
+ def __init__(self, c, peak_amplitude):
self.c = c
+ self._plot_data = None
+
# Number of measurements used to extract the statistic
self.n_meas = 0
# Boundaries for the bins
- self.tx_boundaries = np.linspace(c.ES_start, c.ES_end, c.ES_n_bins + 1)
+ self.tx_boundaries = np.linspace(0.0, peak_amplitude, c.ES_n_bins + 1)
self.n_per_bin = c.ES_n_per_bin
# List of rx values for each bin
@@ -58,12 +60,14 @@ class ExtractStatistic:
for i in range(c.ES_n_bins):
self.tx_values_lists.append([])
- self.plot = c.ES_plot
+ def get_bin_info(self):
+ return "Binning: {} bins used for amplitudes between {} and {}".format(
+ len(self.tx_boundaries), np.min(self.tx_boundaries), np.max(self.tx_boundaries))
+
+ def plot(self, plot_path, title):
+ if self._plot_data is not None:
+ tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists = self._plot_data
- def _plot_and_log(self, tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists):
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_ExtractStatistic.png"
sub_rows = 3
sub_cols = 1
fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
@@ -72,7 +76,7 @@ class ExtractStatistic:
i_sub += 1
ax = plt.subplot(sub_rows, sub_cols, i_sub)
ax.plot(tx_values, rx_values,
- label="Estimated Values",
+ label="Averaged measurements",
color="red")
for i, tx_value in enumerate(tx_values):
rx_values_list = self.rx_values_lists[i]
@@ -80,17 +84,17 @@ class ExtractStatistic:
np.abs(rx_values_list),
s=0.1,
color="black")
- ax.set_title("Extracted Statistic")
+ ax.set_title("Extracted Statistic {}".format(title))
ax.set_xlabel("TX Amplitude")
ax.set_ylabel("RX Amplitude")
- ax.set_ylim(0, 0.8)
- ax.set_xlim(0, 1.1)
+ ax.set_ylim(0, np.max(self.tx_boundaries)) # we expect a rougly a 1:1 correspondence between x and y
+ ax.set_xlim(0, np.max(self.tx_boundaries))
ax.legend(loc=4)
i_sub += 1
ax = plt.subplot(sub_rows, sub_cols, i_sub)
ax.plot(tx_values, np.rad2deg(phase_diffs_values),
- label="Estimated Values",
+ label="Averaged measurements",
color="red")
for i, tx_value in enumerate(tx_values):
phase_diff = phase_diffs_values_lists[i]
@@ -101,7 +105,7 @@ class ExtractStatistic:
ax.set_xlabel("TX Amplitude")
ax.set_ylabel("Phase Difference")
ax.set_ylim(-60, 60)
- ax.set_xlim(0, 1.1)
+ ax.set_xlim(0, np.max(self.tx_boundaries))
ax.legend(loc=4)
num = []
@@ -111,12 +115,12 @@ class ExtractStatistic:
i_sub += 1
ax = plt.subplot(sub_rows, sub_cols, i_sub)
ax.plot(num)
- ax.set_xlabel("TX Amplitude")
+ ax.set_xlabel("TX Amplitude bin")
ax.set_ylabel("Number of Samples")
ax.set_ylim(0, self.n_per_bin * 1.2)
fig.tight_layout()
- fig.savefig(fig_path)
+ fig.savefig(plot_path)
plt.close(fig)
def _rx_value_per_bin(self):
@@ -166,7 +170,7 @@ class ExtractStatistic:
phase_diffs_values_lists = self._phase_diff_list_per_bin()
phase_diffs_values = _phase_diff_value_per_bin(phase_diffs_values_lists)
- self._plot_and_log(tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists)
+ self._plot_data = (tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists)
tx_values_crop = np.array(tx_values, dtype=np.float32)[:idx_end]
rx_values_crop = np.array(rx_values, dtype=np.float32)[:idx_end]
@@ -176,6 +180,7 @@ class ExtractStatistic:
# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2018 Matthias P. Braendli
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
diff --git a/python/dpd/GlobalConfig.py b/python/dpd/GlobalConfig.py
index 873b6ac..632a63b 100644
--- a/python/dpd/GlobalConfig.py
+++ b/python/dpd/GlobalConfig.py
@@ -10,7 +10,7 @@
import numpy as np
class GlobalConfig:
- def __init__(self, samplerate, plot_location: str):
+ def __init__(self, samplerate: int, plot_location: str):
self.sample_rate = samplerate
assert self.sample_rate == 8192000, "We only support constants for 8192000 sample rate: {}".format(self.sample_rate)
@@ -26,6 +26,8 @@ class GlobalConfig:
self.T_U = oversample * 2048 # Inverse of carrier spacing
self.T_C = oversample * 504 # Duration of cyclic prefix
+ self.median_to_peak = 12 # Estimated value for a DAB OFDM signal
+
# Frequency Domain
# example: np.delete(fft[3328:4865], 768)
self.FFT_delta = 1536 # Number of carrier frequencies
@@ -40,10 +42,8 @@ class GlobalConfig:
self.phase_offset_per_sample = 1. / self.sample_rate * 2 * np.pi * 1000
# Constants for ExtractStatistic
- self.ES_plot = plot
- self.ES_start = 0.0
self.ES_end = 1.0
- self.ES_n_bins = 64 # Number of bins between ES_start and ES_end
+ self.ES_n_bins = 64
self.ES_n_per_bin = 128 # Number of measurements pre bin
# Constants for Measure_Shoulder
@@ -68,9 +68,6 @@ class GlobalConfig:
# Constants for MER
self.MER_plot = plot
- # Constants for Model
- self.MDL_plot = plot
-
# Constants for Model_PM
# Set all phase offsets to zero for TX amplitude < MPM_tx_min
self.MPM_tx_min = 0.1
diff --git a/python/dpd/Measure.py b/python/dpd/Measure.py
index 489c4c0..e5a72c7 100644
--- a/python/dpd/Measure.py
+++ b/python/dpd/Measure.py
@@ -15,7 +15,7 @@ import logging
class Measure:
"""Collect Measurement from DabMod"""
- def __init__(self, config, samplerate, port, num_samples_to_request):
+ def __init__(self, config, samplerate : int, port : int, num_samples_to_request : int):
logging.info("Instantiate Measure object")
self.c = config
self.samplerate = samplerate
@@ -23,7 +23,7 @@ class Measure:
self.port = port
self.num_samples_to_request = num_samples_to_request
- def _recv_exact(self, sock, num_bytes):
+ def _recv_exact(self, sock : socket.socket, num_bytes : int) -> bytes:
"""Receive an exact number of bytes from a socket. This is
a wrapper around sock.recv() that can return less than the number
of requested bytes.
@@ -41,7 +41,7 @@ class Measure:
bufs.append(b)
return b''.join(bufs)
- def receive_tcp(self):
+ def receive_tcp(self, num_samples_to_request : int):
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.settimeout(4)
s.connect(('localhost', self.port))
@@ -49,8 +49,8 @@ class Measure:
logging.debug("Send version")
s.sendall(b"\x01")
- logging.debug("Send request for {} samples".format(self.num_samples_to_request))
- s.sendall(struct.pack("=I", self.num_samples_to_request))
+ logging.debug("Send request for {} samples".format(num_samples_to_request))
+ s.sendall(struct.pack("=I", num_samples_to_request))
logging.debug("Wait for TX metadata")
num_samps, tx_second, tx_pps = struct.unpack("=III", self._recv_exact(s, 12))
@@ -90,14 +90,35 @@ class Measure:
return txframe, tx_ts, rxframe, rx_ts
+ def get_samples_unaligned(self, short=False):
+ """Connect to ODR-DabMod, retrieve TX and RX samples, load
+ into numpy arrays, and return a tuple
+ (txframe, tx_ts, rxframe, rx_ts, rx_median, tx_median)
+ """
+
+ n_samps = int(self.num_samples_to_request / 4) if short else self.num_samples_to_request
+ txframe, tx_ts, rxframe, rx_ts = self.receive_tcp(n_samps)
+
+ # Normalize received signal with sent signal
+ rx_median = np.median(np.abs(rxframe))
+ tx_median = np.median(np.abs(txframe))
+ rxframe = rxframe / rx_median * tx_median
+
+
+ logging.info(
+ "Measurement done, tx %d %s, rx %d %s" %
+ (len(txframe), txframe.dtype, len(rxframe), rxframe.dtype))
+
+ return txframe, tx_ts, rxframe, rx_ts, rx_median, tx_median
- def get_samples(self):
+ def get_samples(self, short=False):
"""Connect to ODR-DabMod, retrieve TX and RX samples, load
into numpy arrays, and return a tuple
(txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median)
"""
- txframe, tx_ts, rxframe, rx_ts = self.receive_tcp()
+ n_samps = int(self.num_samples_to_request / 4) if short else self.num_samples_to_request
+ txframe, tx_ts, rxframe, rx_ts = self.receive_tcp(n_samps)
# Normalize received signal with sent signal
rx_median = np.median(np.abs(rxframe))
@@ -116,6 +137,7 @@ class Measure:
# The MIT License (MIT)
#
+# Copyright (c) 2018 Matthias P. Braendli
# Copyright (c) 2017 Andreas Steger
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
diff --git a/python/dpd/Model_AM.py b/python/dpd/Model_AM.py
deleted file mode 100644
index 75b226f..0000000
--- a/python/dpd/Model_AM.py
+++ /dev/null
@@ -1,122 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, model implementation for Amplitude and not Phase
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-def is_npfloat32(array):
- assert isinstance(array, np.ndarray), type(array)
- assert array.dtype == np.float32, array.dtype
- assert array.flags.contiguous
- assert not any(np.isnan(array))
-
-
-def check_input_get_next_coefs(tx_dpd, rx_received):
- is_npfloat32(tx_dpd)
- is_npfloat32(rx_received)
-
-
-def poly(sig):
- return np.array([sig ** i for i in range(1, 6)]).T
-
-
-def fit_poly(tx_abs, rx_abs):
- return np.linalg.lstsq(poly(rx_abs), tx_abs, rcond=None)[0]
-
-
-def calc_line(coefs, min_amp, max_amp):
- rx_range = np.linspace(min_amp, max_amp)
- tx_est = np.sum(poly(rx_range) * coefs, axis=1)
- return tx_est, rx_range
-
-
-class Model_AM:
- """Calculates new coefficients using the measurement and the previous
- coefficients"""
-
- def __init__(self,
- c,
- learning_rate_am=1,
- plot=False):
- self.c = c
-
- self.learning_rate_am = learning_rate_am
- self.plot = plot
-
- def _plot(self, tx_dpd, rx_received, coefs_am, coefs_am_new):
- if self.plot and self.c.plot_location is not None:
- tx_range, rx_est = calc_line(coefs_am, 0, 0.6)
- tx_range_new, rx_est_new = calc_line(coefs_am_new, 0, 0.6)
-
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_Model_AM.png"
- sub_rows = 1
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_range, rx_est,
- label="Estimated TX",
- alpha=0.3,
- color="gray")
- ax.plot(tx_range_new, rx_est_new,
- label="New Estimated TX",
- color="red")
- ax.scatter(tx_dpd, rx_received,
- label="Binned Data",
- color="blue",
- s=1)
- ax.set_title("Model_AM")
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("RX Amplitude")
- ax.set_xlim(-0.5, 1.5)
- ax.legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- def get_next_coefs(self, tx_dpd, rx_received, coefs_am):
- """Calculate the next AM/AM coefficients using the extracted
- statistic of TX and RX amplitude"""
- check_input_get_next_coefs(tx_dpd, rx_received)
-
- coefs_am_new = fit_poly(tx_dpd, rx_received)
- coefs_am_new = coefs_am + \
- self.learning_rate_am * (coefs_am_new - coefs_am)
-
- self._plot(tx_dpd, rx_received, coefs_am, coefs_am_new)
-
- return coefs_am_new
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/python/dpd/Model_PM.py b/python/dpd/Model_PM.py
deleted file mode 100644
index 7b80bf3..0000000
--- a/python/dpd/Model_PM.py
+++ /dev/null
@@ -1,124 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, model implementation for Amplitude and not Phase
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-def is_npfloat32(array):
- assert isinstance(array, np.ndarray), type(array)
- assert array.dtype == np.float32, array.dtype
- assert array.flags.contiguous
- assert not any(np.isnan(array))
-
-
-def check_input_get_next_coefs(tx_dpd, phase_diff):
- is_npfloat32(tx_dpd)
- is_npfloat32(phase_diff)
-
-
-class Model_PM:
- """Calculates new coefficients using the measurement and the previous
- coefficients"""
-
- def __init__(self,
- c,
- learning_rate_pm=1,
- plot=False):
- self.c = c
-
- self.learning_rate_pm = learning_rate_pm
- self.plot = plot
-
- def _plot(self, tx_dpd, phase_diff, coefs_pm, coefs_pm_new):
- if self.plot and self.c.plot_location is not None:
- tx_range, phase_diff_est = self.calc_line(coefs_pm, 0, 0.6)
- tx_range_new, phase_diff_est_new = self.calc_line(coefs_pm_new, 0, 0.6)
-
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_Model_PM.png"
- sub_rows = 1
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_range, phase_diff_est,
- label="Estimated Phase Diff",
- alpha=0.3,
- color="gray")
- ax.plot(tx_range_new, phase_diff_est_new,
- label="New Estimated Phase Diff",
- color="red")
- ax.scatter(tx_dpd, phase_diff,
- label="Binned Data",
- color="blue",
- s=1)
- ax.set_title("Model_PM")
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("Phase DIff")
- ax.legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- def _discard_small_values(self, tx_dpd, phase_diff):
- """ Assumes that the phase for small tx amplitudes is zero"""
- mask = tx_dpd < self.c.MPM_tx_min
- phase_diff[mask] = 0
- return tx_dpd, phase_diff
-
- def poly(self, sig):
- return np.array([sig ** i for i in range(0, 5)]).T
-
- def fit_poly(self, tx_abs, phase_diff):
- return np.linalg.lstsq(self.poly(tx_abs), phase_diff, rcond=None)[0]
-
- def calc_line(self, coefs, min_amp, max_amp):
- tx_range = np.linspace(min_amp, max_amp)
- phase_diff = np.sum(self.poly(tx_range) * coefs, axis=1)
- return tx_range, phase_diff
-
- def get_next_coefs(self, tx_dpd, phase_diff, coefs_pm):
- """Calculate the next AM/PM coefficients using the extracted
- statistic of TX amplitude and phase difference"""
- tx_dpd, phase_diff = self._discard_small_values(tx_dpd, phase_diff)
- check_input_get_next_coefs(tx_dpd, phase_diff)
-
- coefs_pm_new = self.fit_poly(tx_dpd, phase_diff)
-
- coefs_pm_new = coefs_pm + self.learning_rate_pm * (coefs_pm_new - coefs_pm)
- self._plot(tx_dpd, phase_diff, coefs_pm, coefs_pm_new)
-
- return coefs_pm_new
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/python/dpd/Model_Poly.py b/python/dpd/Model_Poly.py
index c8f6135..ef3fed3 100644
--- a/python/dpd/Model_Poly.py
+++ b/python/dpd/Model_Poly.py
@@ -8,15 +8,13 @@
import os
import logging
import numpy as np
+import matplotlib.pyplot as plt
-import dpd.Model_AM as Model_AM
-import dpd.Model_PM as Model_PM
-
-
-def assert_np_float32(x):
- assert isinstance(x, np.ndarray)
- assert x.dtype == np.float32
- assert x.flags.contiguous
+def assert_np_float32(array):
+ assert isinstance(array, np.ndarray), type(array)
+ assert array.dtype == np.float32, array.dtype
+ assert array.flags.contiguous
+ assert not any(np.isnan(array))
def _check_input_get_next_coefs(tx_abs, rx_abs, phase_diff):
@@ -36,20 +34,73 @@ class Poly:
"""Calculates new coefficients using the measurement and the previous
coefficients"""
- def __init__(self,
- c,
- learning_rate_am=1.0,
- learning_rate_pm=1.0):
+ def __init__(self, c, learning_rate_am=1.0, learning_rate_pm=1.0):
self.c = c
- self.plot = c.MDL_plot
self.learning_rate_am = learning_rate_am
self.learning_rate_pm = learning_rate_pm
self.reset_coefs()
- self.model_am = Model_AM.Model_AM(c, plot=self.plot)
- self.model_pm = Model_PM.Model_PM(c, plot=self.plot)
+ def plot(self, plot_location, title):
+ if self._am_plot_data is not None and self._pm_plot_data is not None:
+ tx_dpd, rx_received, coefs_am, coefs_am_new = self._am_plot_data
+
+ tx_range, rx_est = self._am_calc_line(coefs_am, 0, 0.6)
+ tx_range_new, rx_est_new = self._am_calc_line(coefs_am_new, 0, 0.6)
+
+ sub_rows = 2
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ # AM subplot
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_range, rx_est,
+ label="Estimated TX",
+ alpha=0.3,
+ color="gray")
+ ax.plot(tx_range_new, rx_est_new,
+ label="New Estimated TX",
+ color="red")
+ ax.scatter(tx_dpd, rx_received,
+ label="Binned Data",
+ color="blue",
+ s=1)
+ ax.set_title("Model AM and PM {}".format(title))
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("RX Amplitude")
+ ax.set_xlim(0, 1.0)
+ ax.legend(loc=4)
+
+ # PM sub plot
+ tx_dpd, phase_diff, coefs_pm, coefs_pm_new = self._pm_plot_data
+
+ tx_range, phase_diff_est = self._pm_calc_line(coefs_pm, 0, 0.6)
+ tx_range_new, phase_diff_est_new = self._pm_calc_line(coefs_pm_new, 0, 0.6)
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_range, phase_diff_est,
+ label="Estimated Phase Diff",
+ alpha=0.3,
+ color="gray")
+ ax.plot(tx_range_new, phase_diff_est_new,
+ label="New Estimated Phase Diff",
+ color="red")
+ ax.scatter(tx_dpd, phase_diff,
+ label="Binned Data",
+ color="blue",
+ s=1)
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("Phase DIff")
+ ax.set_xlim(0, 1.0)
+ ax.legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(plot_location)
+ plt.close(fig)
def reset_coefs(self):
self.coefs_am = np.zeros(5, dtype=np.float32)
@@ -65,12 +116,8 @@ class Poly:
"""
_check_input_get_next_coefs(tx_abs, rx_abs, phase_diff)
- if not lr is None:
- self.model_am.learning_rate_am = lr
- self.model_pm.learning_rate_pm = lr
-
- coefs_am_new = self.model_am.get_next_coefs(tx_abs, rx_abs, self.coefs_am)
- coefs_pm_new = self.model_pm.get_next_coefs(tx_abs, phase_diff, self.coefs_pm)
+ coefs_am_new = self._am_get_next_coefs(tx_abs, rx_abs, self.coefs_am)
+ coefs_pm_new = self._pm_get_next_coefs(tx_abs, phase_diff, self.coefs_pm)
self.coefs_am = self.coefs_am + (coefs_am_new - self.coefs_am) * self.learning_rate_am
self.coefs_pm = self.coefs_pm + (coefs_pm_new - self.coefs_pm) * self.learning_rate_pm
@@ -78,9 +125,67 @@ class Poly:
def get_dpd_data(self):
return "poly", self.coefs_am, self.coefs_pm
+ def set_dpd_data(self, dpddata):
+ if dpddata[0] != "poly" or len(dpddata) != 3:
+ raise ValueError("dpddata is not of 'poly' format")
+ _, self.coefs_am, self.coefs_pm = dpddata
+
+ def _am_calc_line(self, coefs, min_amp, max_amp):
+ rx_range = np.linspace(min_amp, max_amp)
+ tx_est = np.sum(self._am_poly(rx_range) * coefs, axis=1)
+ return tx_est, rx_range
+
+ def _am_poly(self, sig):
+ return np.array([sig ** i for i in range(1, 6)]).T
+
+ def _am_fit_poly(self, tx_abs, rx_abs):
+ return np.linalg.lstsq(self._am_poly(rx_abs), tx_abs, rcond=None)[0]
+
+ def _am_get_next_coefs(self, tx_dpd, rx_received, coefs_am):
+ """Calculate the next AM/AM coefficients using the extracted
+ statistic of TX and RX amplitude"""
+
+ coefs_am_new = self._am_fit_poly(tx_dpd, rx_received)
+ coefs_am_new = coefs_am + \
+ self.learning_rate_am * (coefs_am_new - coefs_am)
+
+ self._am_plot_data = (tx_dpd, rx_received, coefs_am, coefs_am_new)
+
+ return coefs_am_new
+
+ def _pm_poly(self, sig):
+ return np.array([sig ** i for i in range(0, 5)]).T
+
+ def _pm_calc_line(self, coefs, min_amp, max_amp):
+ tx_range = np.linspace(min_amp, max_amp)
+ phase_diff = np.sum(self._pm_poly(tx_range) * coefs, axis=1)
+ return tx_range, phase_diff
+
+ def _discard_small_values(self, tx_dpd, phase_diff):
+ """ Assumes that the phase for small tx amplitudes is zero"""
+ mask = tx_dpd < self.c.MPM_tx_min
+ phase_diff[mask] = 0
+ return tx_dpd, phase_diff
+
+ def _pm_fit_poly(self, tx_abs, phase_diff):
+ return np.linalg.lstsq(self._pm_poly(tx_abs), phase_diff, rcond=None)[0]
+
+ def _pm_get_next_coefs(self, tx_dpd, phase_diff, coefs_pm):
+ """Calculate the next AM/PM coefficients using the extracted
+ statistic of TX amplitude and phase difference"""
+ tx_dpd, phase_diff = self._discard_small_values(tx_dpd, phase_diff)
+
+ coefs_pm_new = self._pm_fit_poly(tx_dpd, phase_diff)
+
+ coefs_pm_new = coefs_pm + self.learning_rate_pm * (coefs_pm_new - coefs_pm)
+ self._pm_plot_data = (tx_dpd, phase_diff, coefs_pm, coefs_pm_new)
+
+ return coefs_pm_new
+
# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2018 Matthias P. Brandli
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
diff --git a/python/dpd/RX_Agc.py b/python/dpd/RX_Agc.py
index 48ef7f3..bb940be 100644
--- a/python/dpd/RX_Agc.py
+++ b/python/dpd/RX_Agc.py
@@ -19,19 +19,19 @@ import dpd.Adapt as Adapt
import dpd.Measure as Measure
class Agc:
- """The goal of the automatic gain control is to set the
- RX gain to a value at which all received amplitudes can
- be detected. This means that the maximum possible amplitude
+ """The goal of the automatic gain control is to set the
+ RX gain to a value at which all received amplitudes can
+ be detected. This means that the maximum possible amplitude
should be quantized at the highest possible digital value.
- A problem we have to face, is that the estimation of the
- maximum amplitude by applying the max() function is very
- unstable. This is due to the maximum’s rareness. Therefore
- we estimate a far more robust value, such as the median,
+ A problem we have to face, is that the estimation of the
+ maximum amplitude by applying the max() function is very
+ unstable. This is due to the maximum’s rareness. Therefore
+ we estimate a far more robust value, such as the median,
and then approximate the maximum amplitude from it.
- Given this, we tune the RX gain in such a way, that the
- received signal fulfills our desired property, of having
+ Given this, we tune the RX gain in such a way, that the
+ received signal fulfills our desired property, of having
all amplitudes properly quantized."""
def __init__(self, measure, adapt, c):
@@ -45,10 +45,15 @@ class Agc:
self.peak_to_median = 1./c.RAGC_rx_median_target
def run(self) -> Tuple[bool, str]:
- self.adapt.set_rxgain(self.rxgain)
+ try:
+ self.adapt.set_rxgain(self.rxgain)
+ except ValueError as e:
+ return (False, "Setting RX gain to {} failed: {}".format(self.rxgain, e))
+ time.sleep(0.5)
+
# Measure
- txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median, tx_median = self.measure.get_samples()
+ txframe, tx_ts, rxframe, rx_ts, rx_median, tx_median = self.measure.get_samples_unaligned(short=False)
# Estimate Maximum
rx_peak = self.peak_to_median * rx_median
@@ -68,11 +73,19 @@ class Agc:
w = "Warning: calculated RX Gain={} is higher than maximum={}. RX feedback power should be increased.".format(
self.rxgain, self.max_rxgain)
logging.warning(w)
+ try:
+ # Reset to a low value, as we expect the user to reduce external attenuation
+ self.adapt.set_rxgain(30)
+ except ValueError as e:
+ return (False, "\n".join([measurements, w, "Setting RX gain to {} failed: {}".format(self.rxgain, e)]))
return (False, "\n".join([measurements, w]))
else:
- self.adapt.set_rxgain(self.rxgain)
+ try:
+ self.adapt.set_rxgain(self.rxgain)
+ except ValueError as e:
+ return (False, "Setting RX gain to {} failed: {}".format(self.rxgain, e))
time.sleep(0.5)
- return (True, measurements)
+ return (True, measurements)
def plot_estimates(self):
"""Plots the estimate of for Max, Median, Mean for different