summaryrefslogtreecommitdiffstats
path: root/python/dpd/src
diff options
context:
space:
mode:
Diffstat (limited to 'python/dpd/src')
-rw-r--r--python/dpd/src/Adapt.py286
-rw-r--r--python/dpd/src/Dab_Util.py246
-rw-r--r--python/dpd/src/ExtractStatistic.py196
-rw-r--r--python/dpd/src/GlobalConfig.py108
-rw-r--r--python/dpd/src/Heuristics.py56
-rw-r--r--python/dpd/src/MER.py132
-rw-r--r--python/dpd/src/Measure.py136
-rw-r--r--python/dpd/src/Measure_Shoulders.py158
-rw-r--r--python/dpd/src/Model.py32
-rw-r--r--python/dpd/src/Model_AM.py122
-rw-r--r--python/dpd/src/Model_Lut.py60
-rw-r--r--python/dpd/src/Model_PM.py124
-rw-r--r--python/dpd/src/Model_Poly.py101
-rw-r--r--python/dpd/src/RX_Agc.py166
-rw-r--r--python/dpd/src/Symbol_align.py193
-rw-r--r--python/dpd/src/TX_Agc.py131
-rw-r--r--python/dpd/src/__init__.py0
-rw-r--r--python/dpd/src/phase_align.py98
-rwxr-xr-xpython/dpd/src/subsample_align.py111
19 files changed, 2456 insertions, 0 deletions
diff --git a/python/dpd/src/Adapt.py b/python/dpd/src/Adapt.py
new file mode 100644
index 0000000..a57602f
--- /dev/null
+++ b/python/dpd/src/Adapt.py
@@ -0,0 +1,286 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine: updates ODR-DabMod's settings
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+"""
+This module is used to change settings of ODR-DabMod using
+the ZMQ remote control socket.
+"""
+
+import zmq
+import logging
+import numpy as np
+import os
+import datetime
+import pickle
+
+LUT_LEN = 32
+FORMAT_POLY = 1
+FORMAT_LUT = 2
+
+
+def _write_poly_coef_file(coefs_am, coefs_pm, path):
+ assert (len(coefs_am) == len(coefs_pm))
+
+ f = open(path, 'w')
+ f.write("{}\n{}\n".format(FORMAT_POLY, len(coefs_am)))
+ for coef in coefs_am:
+ f.write("{}\n".format(coef))
+ for coef in coefs_pm:
+ f.write("{}\n".format(coef))
+ f.close()
+
+
+def _write_lut_file(scalefactor, lut, path):
+ assert (len(lut) == LUT_LEN)
+
+ f = open(path, 'w')
+ f.write("{}\n{}\n".format(FORMAT_LUT, scalefactor))
+ for coef in lut:
+ f.write("{}\n{}\n".format(coef.real, coef.imag))
+ f.close()
+
+def dpddata_to_str(dpddata):
+ if dpddata[0] == "poly":
+ coefs_am = dpddata[1]
+ coefs_pm = dpddata[2]
+ return "dpd_coefs_am {}, dpd_coefs_pm {}".format(
+ coefs_am, coefs_pm)
+ elif dpddata[0] == "lut":
+ scalefactor = dpddata[1]
+ lut = dpddata[2]
+ return "LUT scalefactor {}, LUT {}".format(
+ scalefactor, lut)
+ else:
+ raise ValueError("Unknown dpddata type {}".format(dpddata[0]))
+
+class Adapt:
+ """Uses the ZMQ remote control to change parameters of the DabMod
+
+ Parameters
+ ----------
+ port : int
+ Port at which the ODR-DabMod is listening to connect the
+ ZMQ remote control.
+ """
+
+ def __init__(self, config, port, coef_path):
+ logging.debug("Instantiate Adapt object")
+ self.c = config
+ self.port = port
+ self.coef_path = coef_path
+ self.host = "localhost"
+ self._context = zmq.Context()
+
+ def _connect(self):
+ """Establish the connection to ODR-DabMod using
+ a ZMQ socket that is in request mode (Client).
+ Returns a socket"""
+ sock = self._context.socket(zmq.REQ)
+ poller = zmq.Poller()
+ poller.register(sock, zmq.POLLIN)
+
+ sock.connect("tcp://%s:%d" % (self.host, self.port))
+
+ sock.send(b"ping")
+
+ socks = dict(poller.poll(1000))
+ if socks:
+ if socks.get(sock) == zmq.POLLIN:
+ data = [el.decode() for el in sock.recv_multipart()]
+
+ if data != ['ok']:
+ raise RuntimeError(
+ "Invalid ZMQ RC answer to 'ping' at %s %d: %s" %
+ (self.host, self.port, data))
+ else:
+ sock.close(linger=10)
+ raise RuntimeError(
+ "ZMQ RC does not respond to 'ping' at %s %d" %
+ (self.host, self.port))
+
+ return sock
+
+ def send_receive(self, message):
+ """Send a message to ODR-DabMod. It always
+ returns the answer ODR-DabMod sends back.
+
+ An example message could be
+ "get sdr txgain" or "set sdr txgain 50"
+
+ Parameter
+ ---------
+ message : str
+ The message string that will be sent to the receiver.
+ """
+ sock = self._connect()
+ logging.debug("Send message: %s" % message)
+ msg_parts = message.split(" ")
+ for i, part in enumerate(msg_parts):
+ if i == len(msg_parts) - 1:
+ f = 0
+ else:
+ f = zmq.SNDMORE
+
+ sock.send(part.encode(), flags=f)
+
+ data = [el.decode() for el in sock.recv_multipart()]
+ logging.debug("Received message: %s" % message)
+ return data
+
+ def set_txgain(self, gain):
+ """Set a new txgain for the ODR-DabMod.
+
+ Parameters
+ ----------
+ gain : int
+ new TX gain, in the same format as ODR-DabMod's config file
+ """
+ # TODO this is specific to the B200
+ if gain < 0 or gain > 89:
+ raise ValueError("Gain has to be in [0,89]")
+ return self.send_receive("set sdr txgain %.4f" % float(gain))
+
+ def get_txgain(self):
+ """Get the txgain value in dB for the ODR-DabMod."""
+ # TODO handle failure
+ return float(self.send_receive("get sdr txgain")[0])
+
+ def set_rxgain(self, gain):
+ """Set a new rxgain for the ODR-DabMod.
+
+ Parameters
+ ----------
+ gain : int
+ new RX gain, in the same format as ODR-DabMod's config file
+ """
+ # TODO this is specific to the B200
+ if gain < 0 or gain > 89:
+ raise ValueError("Gain has to be in [0,89]")
+ return self.send_receive("set sdr rxgain %.4f" % float(gain))
+
+ def get_rxgain(self):
+ """Get the rxgain value in dB for the ODR-DabMod."""
+ # TODO handle failure
+ return float(self.send_receive("get sdr rxgain")[0])
+
+ def set_digital_gain(self, gain):
+ """Set a new rxgain for the ODR-DabMod.
+
+ Parameters
+ ----------
+ gain : int
+ new RX gain, in the same format as ODR-DabMod's config file
+ """
+ msg = "set gain digital %.5f" % gain
+ return self.send_receive(msg)
+
+ def get_digital_gain(self):
+ """Get the rxgain value in dB for the ODR-DabMod."""
+ # TODO handle failure
+ return float(self.send_receive("get gain digital")[0])
+
+ def get_predistorter(self):
+ """Load the coefficients from the file in the format given in the README,
+ return ("poly", [AM coef], [PM coef]) or ("lut", scalefactor, [LUT entries])
+ """
+ f = open(self.coef_path, 'r')
+ lines = f.readlines()
+ predistorter_format = int(lines[0])
+ if predistorter_format == FORMAT_POLY:
+ coefs_am_out = []
+ coefs_pm_out = []
+ n_coefs = int(lines[1])
+ coefs = [float(l) for l in lines[2:]]
+ i = 0
+ for c in coefs:
+ if i < n_coefs:
+ coefs_am_out.append(c)
+ elif i < 2 * n_coefs:
+ coefs_pm_out.append(c)
+ else:
+ raise ValueError(
+ 'Incorrect coef file format: too many'
+ ' coefficients in {}, should be {}, coefs are {}'
+ .format(self.coef_path, n_coefs, coefs))
+ i += 1
+ f.close()
+ return 'poly', coefs_am_out, coefs_pm_out
+ elif predistorter_format == FORMAT_LUT:
+ scalefactor = int(lines[1])
+ coefs = np.array([float(l) for l in lines[2:]], dtype=np.float32)
+ coefs = coefs.reshape((-1, 2))
+ lut = coefs[..., 0] + 1j * coefs[..., 1]
+ if len(lut) != LUT_LEN:
+ raise ValueError("Incorrect number of LUT entries ({} expected {})".format(len(lut), LUT_LEN))
+ return 'lut', scalefactor, lut
+ else:
+ raise ValueError("Unknown predistorter format {}".format(predistorter_format))
+
+ def set_predistorter(self, dpddata):
+ """Update the predistorter data in the modulator. Takes the same
+ tuple format as argument than the one returned get_predistorter()"""
+ if dpddata[0] == "poly":
+ coefs_am = dpddata[1]
+ coefs_pm = dpddata[2]
+ _write_poly_coef_file(coefs_am, coefs_pm, self.coef_path)
+ elif dpddata[0] == "lut":
+ scalefactor = dpddata[1]
+ lut = dpddata[2]
+ _write_lut_file(scalefactor, lut, self.coef_path)
+ else:
+ raise ValueError("Unknown predistorter '{}'".format(dpddata[0]))
+ self.send_receive("set memlesspoly coeffile {}".format(self.coef_path))
+
+ def dump(self, path=None):
+ """Backup current settings to a file"""
+ dt = datetime.datetime.now().isoformat()
+ if path is None:
+ if self.c.plot_location is not None:
+ path = self.c.plot_location + "/" + dt + "_adapt.pkl"
+ else:
+ raise Exception("Cannot dump Adapt without either plot_location or path set")
+ d = {
+ "txgain": self.get_txgain(),
+ "rxgain": self.get_rxgain(),
+ "digital_gain": self.get_digital_gain(),
+ "predistorter": self.get_predistorter()
+ }
+ with open(path, "wb") as f:
+ pickle.dump(d, f)
+
+ return path
+
+ def load(self, path):
+ """Restore settings from a file"""
+ with open(path, "rb") as f:
+ d = pickle.load(f)
+
+ self.set_txgain(d["txgain"])
+ self.set_digital_gain(d["digital_gain"])
+ self.set_rxgain(d["rxgain"])
+ self.set_predistorter(d["predistorter"])
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger, Matthias P. Braendli
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Dab_Util.py b/python/dpd/src/Dab_Util.py
new file mode 100644
index 0000000..bc89a39
--- /dev/null
+++ b/python/dpd/src/Dab_Util.py
@@ -0,0 +1,246 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, utilities for working with DAB signals.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+import numpy as np
+import matplotlib
+
+matplotlib.use('agg')
+import matplotlib.pyplot as plt
+import src.subsample_align as sa
+import src.phase_align as pa
+from scipy import signal
+
+
+def fromfile(filename, offset=0, length=None):
+ if length is None:
+ return np.memmap(filename, dtype=np.complex64, mode='r', offset=64 / 8 * offset)
+ else:
+ return np.memmap(filename, dtype=np.complex64, mode='r', offset=64 / 8 * offset, shape=length)
+
+
+class Dab_Util:
+ """Collection of methods that can be applied to an array
+ complex IQ samples of a DAB signal
+ """
+
+ def __init__(self, config, sample_rate, plot=False):
+ """
+ :param sample_rate: sample rate [sample/sec] to use for calculations
+ """
+ self.c = config
+ self.sample_rate = sample_rate
+ self.dab_bandwidth = 1536000 # Bandwidth of a dab signal
+ self.frame_ms = 96 # Duration of a Dab frame
+
+ self.plot = plot
+
+ def lag(self, sig_orig, sig_rec):
+ """
+ Find lag between two signals
+ Args:
+ sig_orig: The signal that has been sent
+ sig_rec: The signal that has been recored
+ """
+ off = sig_rec.shape[0]
+ c = np.abs(signal.correlate(sig_orig, sig_rec))
+
+ if self.plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ corr_path = self.c.plot_location + "/" + dt + "_tx_rx_corr.png"
+ plt.plot(c, label="corr")
+ plt.legend()
+ plt.savefig(corr_path)
+ plt.close()
+
+ return np.argmax(c) - off + 1
+
+ def lag_upsampling(self, sig_orig, sig_rec, n_up):
+ if n_up != 1:
+ sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up)
+ sig_rec_up = signal.resample(sig_rec, sig_rec.shape[0] * n_up)
+ else:
+ sig_orig_up = sig_orig
+ sig_rec_up = sig_rec
+ l = self.lag(sig_orig_up, sig_rec_up)
+ l_orig = float(l) / n_up
+ return l_orig
+
+ def subsample_align_upsampling(self, sig_tx, sig_rx, n_up=32):
+ """
+ Returns an aligned version of sig_tx and sig_rx by cropping and subsample alignment
+ Using upsampling
+ """
+ assert (sig_tx.shape[0] == sig_rx.shape[0])
+
+ if sig_tx.shape[0] % 2 == 1:
+ sig_tx = sig_tx[:-1]
+ sig_rx = sig_rx[:-1]
+
+ sig1_up = signal.resample(sig_tx, sig_tx.shape[0] * n_up)
+ sig2_up = signal.resample(sig_rx, sig_rx.shape[0] * n_up)
+
+ off_meas = self.lag_upsampling(sig2_up, sig1_up, n_up=1)
+ off = int(abs(off_meas))
+
+ if off_meas > 0:
+ sig1_up = sig1_up[:-off]
+ sig2_up = sig2_up[off:]
+ elif off_meas < 0:
+ sig1_up = sig1_up[off:]
+ sig2_up = sig2_up[:-off]
+
+ sig_tx = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64)
+ sig_rx = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64)
+ return sig_tx, sig_rx
+
+ def subsample_align(self, sig_tx, sig_rx):
+ """
+ Returns an aligned version of sig_tx and sig_rx by cropping and subsample alignment
+ """
+
+ if self.plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_sync_raw.png"
+
+ fig, axs = plt.subplots(2)
+ axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
+ axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
+ axs[0].set_title("Raw Data")
+ axs[0].set_ylabel("Amplitude")
+ axs[0].set_xlabel("Samples")
+ axs[0].legend(loc=4)
+
+ axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
+ axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
+ axs[1].set_title("Raw Data")
+ axs[1].set_ylabel("Real Part")
+ axs[1].set_xlabel("Samples")
+ axs[1].legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ off_meas = self.lag_upsampling(sig_rx, sig_tx, n_up=1)
+ off = int(abs(off_meas))
+
+ logging.debug("sig_tx_orig: {} {}, sig_rx_orig: {} {}, offset {}".format(
+ len(sig_tx),
+ sig_tx.dtype,
+ len(sig_rx),
+ sig_rx.dtype,
+ off_meas))
+
+ if off_meas > 0:
+ sig_tx = sig_tx[:-off]
+ sig_rx = sig_rx[off:]
+ elif off_meas < 0:
+ sig_tx = sig_tx[off:]
+ sig_rx = sig_rx[:-off]
+
+ if off % 2 == 1:
+ sig_tx = sig_tx[:-1]
+ sig_rx = sig_rx[:-1]
+
+ if self.plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_sync_sample_aligned.png"
+
+ fig, axs = plt.subplots(2)
+ axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
+ axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
+ axs[0].set_title("Sample Aligned Data")
+ axs[0].set_ylabel("Amplitude")
+ axs[0].set_xlabel("Samples")
+ axs[0].legend(loc=4)
+
+ axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
+ axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
+ axs[1].set_ylabel("Real Part")
+ axs[1].set_xlabel("Samples")
+ axs[1].legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ sig_rx = sa.subsample_align(sig_rx, sig_tx)
+
+ if self.plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_sync_subsample_aligned.png"
+
+ fig, axs = plt.subplots(2)
+ axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
+ axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
+ axs[0].set_title("Subsample Aligned")
+ axs[0].set_ylabel("Amplitude")
+ axs[0].set_xlabel("Samples")
+ axs[0].legend(loc=4)
+
+ axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
+ axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
+ axs[1].set_ylabel("Real Part")
+ axs[1].set_xlabel("Samples")
+ axs[1].legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ sig_rx = pa.phase_align(sig_rx, sig_tx)
+
+ if self.plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_sync_phase_aligned.png"
+
+ fig, axs = plt.subplots(2)
+ axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
+ axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
+ axs[0].set_title("Phase Aligned")
+ axs[0].set_ylabel("Amplitude")
+ axs[0].set_xlabel("Samples")
+ axs[0].legend(loc=4)
+
+ axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
+ axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
+ axs[1].set_ylabel("Real Part")
+ axs[1].set_xlabel("Samples")
+ axs[1].legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ logging.debug(
+ "Sig1_cut: %d %s, Sig2_cut: %d %s, off: %d" % (len(sig_tx), sig_tx.dtype, len(sig_rx), sig_rx.dtype, off))
+ return sig_tx, sig_rx
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/ExtractStatistic.py b/python/dpd/src/ExtractStatistic.py
new file mode 100644
index 0000000..639513a
--- /dev/null
+++ b/python/dpd/src/ExtractStatistic.py
@@ -0,0 +1,196 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine,
+# Extract statistic from received TX and RX data to use in Model
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import numpy as np
+import matplotlib.pyplot as plt
+import datetime
+import os
+import logging
+
+
+def _check_input_extract(tx_dpd, rx_received):
+ # Check data type
+ assert tx_dpd[0].dtype == np.complex64, \
+ "tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype)
+ assert rx_received[0].dtype == np.complex64, \
+ "rx_received is not complex64 but {}".format(rx_received[0].dtype)
+ # Check if signals have same normalization
+ normalization_error = np.abs(np.median(np.abs(tx_dpd)) -
+ np.median(np.abs(rx_received))) / (
+ np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
+ assert normalization_error < 0.01, "Non normalized signals"
+
+
+def _phase_diff_value_per_bin(phase_diffs_values_lists):
+ phase_list = []
+ for values in phase_diffs_values_lists:
+ mean = np.mean(values) if len(values) > 0 else np.nan
+ phase_list.append(mean)
+ return phase_list
+
+
+class ExtractStatistic:
+ """Calculate a low variance RX value for equally spaced tx values
+ of a predefined range"""
+
+ def __init__(self, c):
+ self.c = c
+
+ # Number of measurements used to extract the statistic
+ self.n_meas = 0
+
+ # Boundaries for the bins
+ self.tx_boundaries = np.linspace(c.ES_start, c.ES_end, c.ES_n_bins + 1)
+ self.n_per_bin = c.ES_n_per_bin
+
+ # List of rx values for each bin
+ self.rx_values_lists = []
+ for i in range(c.ES_n_bins):
+ self.rx_values_lists.append([])
+
+ # List of tx values for each bin
+ self.tx_values_lists = []
+ for i in range(c.ES_n_bins):
+ self.tx_values_lists.append([])
+
+ self.plot = c.ES_plot
+
+ def _plot_and_log(self, tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists):
+ if self.plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_ExtractStatistic.png"
+ sub_rows = 3
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_values, rx_values,
+ label="Estimated Values",
+ color="red")
+ for i, tx_value in enumerate(tx_values):
+ rx_values_list = self.rx_values_lists[i]
+ ax.scatter(np.ones(len(rx_values_list)) * tx_value,
+ np.abs(rx_values_list),
+ s=0.1,
+ color="black")
+ ax.set_title("Extracted Statistic")
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("RX Amplitude")
+ ax.set_ylim(0, 0.8)
+ ax.set_xlim(0, 1.1)
+ ax.legend(loc=4)
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_values, np.rad2deg(phase_diffs_values),
+ label="Estimated Values",
+ color="red")
+ for i, tx_value in enumerate(tx_values):
+ phase_diff = phase_diffs_values_lists[i]
+ ax.scatter(np.ones(len(phase_diff)) * tx_value,
+ np.rad2deg(phase_diff),
+ s=0.1,
+ color="black")
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("Phase Difference")
+ ax.set_ylim(-60, 60)
+ ax.set_xlim(0, 1.1)
+ ax.legend(loc=4)
+
+ num = []
+ for i, tx_value in enumerate(tx_values):
+ rx_values_list = self.rx_values_lists[i]
+ num.append(len(rx_values_list))
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(num)
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("Number of Samples")
+ ax.set_ylim(0, self.n_per_bin * 1.2)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ def _rx_value_per_bin(self):
+ rx_values = []
+ for values in self.rx_values_lists:
+ mean = np.mean(np.abs(values)) if len(values) > 0 else np.nan
+ rx_values.append(mean)
+ return rx_values
+
+ def _tx_value_per_bin(self):
+ tx_values = []
+ for start, end in zip(self.tx_boundaries, self.tx_boundaries[1:]):
+ tx_values.append(np.mean((start, end)))
+ return tx_values
+
+ def _phase_diff_list_per_bin(self):
+ phase_values_lists = []
+ for tx_list, rx_list in zip(self.tx_values_lists, self.rx_values_lists):
+ phase_diffs = []
+ for tx, rx in zip(tx_list, rx_list):
+ phase_diffs.append(np.angle(rx * tx.conjugate()))
+ phase_values_lists.append(phase_diffs)
+ return phase_values_lists
+
+ def extract(self, tx_dpd, rx):
+ """Extract information from a new measurement and store them
+ in member variables."""
+ _check_input_extract(tx_dpd, rx)
+ self.n_meas += 1
+
+ tx_abs = np.abs(tx_dpd)
+ for i, (tx_start, tx_end) in enumerate(zip(self.tx_boundaries, self.tx_boundaries[1:])):
+ mask = (tx_abs > tx_start) & (tx_abs < tx_end)
+ n_add = max(0, self.n_per_bin - len(self.rx_values_lists[i]))
+ self.rx_values_lists[i] += \
+ list(rx[mask][:n_add])
+ self.tx_values_lists[i] += \
+ list(tx_dpd[mask][:n_add])
+
+ rx_values = self._rx_value_per_bin()
+ tx_values = self._tx_value_per_bin()
+
+ n_per_bin = np.array([len(values) for values in self.rx_values_lists])
+ # Index of first not filled bin, assumes that never all bins are filled
+ idx_end = np.argmin(n_per_bin == self.c.ES_n_per_bin)
+
+ phase_diffs_values_lists = self._phase_diff_list_per_bin()
+ phase_diffs_values = _phase_diff_value_per_bin(phase_diffs_values_lists)
+
+ self._plot_and_log(tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists)
+
+ tx_values_crop = np.array(tx_values, dtype=np.float32)[:idx_end]
+ rx_values_crop = np.array(rx_values, dtype=np.float32)[:idx_end]
+ phase_diffs_values_crop = np.array(phase_diffs_values, dtype=np.float32)[:idx_end]
+ return tx_values_crop, rx_values_crop, phase_diffs_values_crop, n_per_bin
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/GlobalConfig.py b/python/dpd/src/GlobalConfig.py
new file mode 100644
index 0000000..56839fc
--- /dev/null
+++ b/python/dpd/src/GlobalConfig.py
@@ -0,0 +1,108 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, constants and global configuration
+#
+# Source for DAB standard: etsi_EN_300_401_v010401p p145
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import numpy as np
+
+class GlobalConfig:
+ def __init__(self, cli_args, plot_location):
+ self.sample_rate = cli_args.samplerate
+ assert self.sample_rate == 8192000 # By now only constants for 8192000
+
+ self.plot_location = plot_location
+
+ # DAB frame
+ # Time domain
+ oversample = int(self.sample_rate / 2048000)
+ self.T_F = oversample * 196608 # Transmission frame duration
+ self.T_NULL = oversample * 2656 # Null symbol duration
+ self.T_S = oversample * 2552 # Duration of OFDM symbols of indices l = 1, 2, 3,... L;
+ self.T_U = oversample * 2048 # Inverse of carrier spacing
+ self.T_C = oversample * 504 # Duration of cyclic prefix
+
+ # Frequency Domain
+ # example: np.delete(fft[3328:4865], 768)
+ self.FFT_delta = 1536 # Number of carrier frequencies
+ self.FFT_delete = 768
+ self.FFT_start = 3328
+ self.FFT_end = 4865
+
+ # Calculate sample offset from phase rotation
+ # time per sample = 1 / sample_rate
+ # frequency per bin = 1kHz
+ # phase difference per sample offset = delta_t * 2 * pi * delta_freq
+ self.phase_offset_per_sample = 1. / self.sample_rate * 2 * np.pi * 1000
+
+ # Constants for ExtractStatistic
+ self.ES_plot = cli_args.plot
+ self.ES_start = 0.0
+ self.ES_end = 1.0
+ self.ES_n_bins = 64 # Number of bins between ES_start and ES_end
+ self.ES_n_per_bin = 128 # Number of measurements pre bin
+
+ # Constants for Measure_Shoulder
+ self.MS_enable = False
+ self.MS_plot = cli_args.plot
+
+ meas_offset = 976 # Offset from center frequency to measure shoulder [kHz]
+ meas_width = 100 # Size of frequency delta to measure shoulder [kHz]
+ shoulder_offset_edge = np.abs(meas_offset - self.FFT_delta)
+ self.MS_shoulder_left_start = self.FFT_start - shoulder_offset_edge - meas_width / 2
+ self.MS_shoulder_left_end = self.FFT_start - shoulder_offset_edge + meas_width / 2
+ self.MS_shoulder_right_start = self.FFT_end + shoulder_offset_edge - meas_width / 2
+ self.MS_shoulder_right_end = self.FFT_end + shoulder_offset_edge + meas_width / 2
+ self.MS_peak_start = self.FFT_start + 100 # Ignore region near edges
+ self.MS_peak_end = self.FFT_end - 100
+
+ self.MS_FFT_size = 8192
+ self.MS_averaging_size = 4 * self.MS_FFT_size
+ self.MS_n_averaging = 40
+ self.MS_n_proc = 4
+
+ # Constants for MER
+ self.MER_plot = cli_args.plot
+
+ # Constants for Model
+ self.MDL_plot = cli_args.plot
+
+ # Constants for Model_PM
+ # Set all phase offsets to zero for TX amplitude < MPM_tx_min
+ self.MPM_tx_min = 0.1
+
+ # Constants for TX_Agc
+ self.TAGC_max_txgain = 89 # USRP B200 specific
+ self.TAGC_tx_median_target = cli_args.target_median
+ self.TAGC_tx_median_max = self.TAGC_tx_median_target * 1.4
+ self.TAGC_tx_median_min = self.TAGC_tx_median_target / 1.4
+
+ # Constants for RX_AGC
+ self.RAGC_min_rxgain = 25 # USRP B200 specific
+ self.RAGC_rx_median_target = cli_args.target_median
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2017 Matthias P. Braendli
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Heuristics.py b/python/dpd/src/Heuristics.py
new file mode 100644
index 0000000..21d400b
--- /dev/null
+++ b/python/dpd/src/Heuristics.py
@@ -0,0 +1,56 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, heuristics we use to tune the parameters.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import numpy as np
+
+
+def get_learning_rate(idx_run):
+ """Gradually reduce learning rate from lr_max to lr_min within
+ idx_max steps, then keep the learning rate at lr_min"""
+ idx_max = 10.0
+ lr_min = 0.05
+ lr_max = 0.4
+ lr_delta = lr_max - lr_min
+ idx_run = min(idx_run, idx_max)
+ learning_rate = lr_max - lr_delta * idx_run / idx_max
+ return learning_rate
+
+
+def get_n_meas(idx_run):
+ """Gradually increase number of measurements used to extract
+ a statistic from n_meas_min to n_meas_max within idx_max steps,
+ then keep number of measurements at n_meas_max"""
+ idx_max = 10.0
+ n_meas_min = 10
+ n_meas_max = 20
+ n_meas_delta = n_meas_max - n_meas_min
+ idx_run = min(idx_run, idx_max)
+ learning_rate = n_meas_delta * idx_run / idx_max + n_meas_min
+ return int(np.round(learning_rate))
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2017 Matthias P. Braendli
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/MER.py b/python/dpd/src/MER.py
new file mode 100644
index 0000000..693058d
--- /dev/null
+++ b/python/dpd/src/MER.py
@@ -0,0 +1,132 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, Modulation Error Rate.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+import numpy as np
+import matplotlib
+matplotlib.use('agg')
+import matplotlib.pyplot as plt
+
+class MER:
+ def __init__(self, c):
+ self.c = c
+
+ self.plot = c.MER_plot
+
+ def _calc_spectrum(self, tx):
+ fft = np.fft.fftshift(np.fft.fft(tx))
+ return np.delete(fft[self.c.FFT_start:self.c.FFT_end],
+ self.c.FFT_delete)
+
+ def _split_in_carrier(self, x, y):
+ if 0.5 < np.mean((np.abs(np.abs(x) - np.abs(y)) /
+ np.abs(np.abs(x) + np.abs(y)))):
+ # Constellation points are axis aligned on the Im/Re plane
+ x1 = x[(y < x) & (y > -x)]
+ y1 = y[(y < x) & (y > -x)]
+
+ x2 = x[(y > x) & (y > -x)]
+ y2 = y[(y > x) & (y > -x)]
+
+ x3 = x[(y > x) & (y < -x)]
+ y3 = y[(y > x) & (y < -x)]
+
+ x4 = x[(y < x) & (y < -x)]
+ y4 = y[(y < x) & (y < -x)]
+ else:
+ # Constellation points are on the diagonal or Im/Re plane
+ x1 = x[(+x > 0) & (+y > 0)]
+ y1 = y[(+x > 0) & (+y > 0)]
+
+ x2 = x[(-x > 0) & (+y > 0)]
+ y2 = y[(-x > 0) & (+y > 0)]
+
+ x3 = x[(-x > 0) & (-y > 0)]
+ y3 = y[(-x > 0) & (-y > 0)]
+
+ x4 = x[(+x > 0) & (-y > 0)]
+ y4 = y[(+x > 0) & (-y > 0)]
+ return (x1, y1), (x2, y2), (x3, y3), (x4, y4)
+
+ def _calc_mer_for_isolated_constellation_point(self, x, y):
+ """Calculate MER for one constellation point"""
+ x_mean = np.mean(x)
+ y_mean = np.mean(y)
+
+ U_RMS = np.sqrt(x_mean ** 2 + y_mean ** 2)
+ U_ERR = np.mean(np.sqrt((x - x_mean) ** 2 + (y - y_mean) ** 2))
+ MER = 20 * np.log10(U_ERR / U_RMS)
+
+ return x_mean, y_mean, U_RMS, U_ERR, MER
+
+ def calc_mer(self, tx, debug_name=""):
+ """Calculate MER for input signal from a symbol aligned signal."""
+ assert tx.shape[0] == self.c.T_U, "Wrong input length"
+
+ spectrum = self._calc_spectrum(tx)
+
+ if self.plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_MER" + debug_name + ".png"
+ else:
+ fig_path = None
+
+ MERs = []
+ for i, (x, y) in enumerate(self._split_in_carrier(
+ np.real(spectrum),
+ np.imag(spectrum))):
+ x_mean, y_mean, U_RMS, U_ERR, MER =\
+ self._calc_mer_for_isolated_constellation_point(x, y)
+ MERs.append(MER)
+
+ tau = np.linspace(0, 2 * np.pi, num=100)
+ x_err = U_ERR * np.sin(tau) + x_mean
+ y_err = U_ERR * np.cos(tau) + y_mean
+
+ if self.plot:
+ ax = plt.subplot(221 + i)
+ ax.scatter(x, y, s=0.2, color='black')
+ ax.plot(x_mean, y_mean, 'p', color='red')
+ ax.plot(x_err, y_err, linewidth=2, color='blue')
+ ax.text(0.1, 0.1, "MER {:.1f}dB".format(MER), transform=ax.transAxes)
+ ax.set_xlabel("Real")
+ ax.set_ylabel("Imag")
+ ylim = ax.get_ylim()
+ ax.set_ylim(ylim[0] - (ylim[1] - ylim[0]) * 0.1, ylim[1])
+
+ if fig_path is not None:
+ plt.tight_layout()
+ plt.savefig(fig_path)
+ plt.show()
+ plt.close()
+
+ MER_res = 20 * np.log10(np.mean([10 ** (MER / 20) for MER in MERs]))
+ return MER_res
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Measure.py b/python/dpd/src/Measure.py
new file mode 100644
index 0000000..6d8007d
--- /dev/null
+++ b/python/dpd/src/Measure.py
@@ -0,0 +1,136 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, Measure signal using ODR-DabMod's
+# DPD Server.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import socket
+import struct
+import numpy as np
+import src.Dab_Util as DU
+import os
+import logging
+
+class Measure:
+ """Collect Measurement from DabMod"""
+ def __init__(self, config, samplerate, port, num_samples_to_request):
+ logging.info("Instantiate Measure object")
+ self.c = config
+ self.samplerate = samplerate
+ self.sizeof_sample = 8 # complex floats
+ self.port = port
+ self.num_samples_to_request = num_samples_to_request
+
+ def _recv_exact(self, sock, num_bytes):
+ """Receive an exact number of bytes from a socket. This is
+ a wrapper around sock.recv() that can return less than the number
+ of requested bytes.
+
+ Args:
+ sock (socket): Socket to receive data from.
+ num_bytes (int): Number of bytes that will be returned.
+ """
+ bufs = []
+ while num_bytes > 0:
+ b = sock.recv(num_bytes)
+ if len(b) == 0:
+ break
+ num_bytes -= len(b)
+ bufs.append(b)
+ return b''.join(bufs)
+
+ def receive_tcp(self):
+ s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
+ s.settimeout(4)
+ s.connect(('localhost', self.port))
+
+ logging.debug("Send version")
+ s.sendall(b"\x01")
+
+ logging.debug("Send request for {} samples".format(self.num_samples_to_request))
+ s.sendall(struct.pack("=I", self.num_samples_to_request))
+
+ logging.debug("Wait for TX metadata")
+ num_samps, tx_second, tx_pps = struct.unpack("=III", self._recv_exact(s, 12))
+ tx_ts = tx_second + tx_pps / 16384000.0
+
+ if num_samps > 0:
+ logging.debug("Receiving {} TX samples".format(num_samps))
+ txframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample)
+ txframe = np.fromstring(txframe_bytes, dtype=np.complex64)
+ else:
+ txframe = np.array([], dtype=np.complex64)
+
+ logging.debug("Wait for RX metadata")
+ rx_second, rx_pps = struct.unpack("=II", self._recv_exact(s, 8))
+ rx_ts = rx_second + rx_pps / 16384000.0
+
+ if num_samps > 0:
+ logging.debug("Receiving {} RX samples".format(num_samps))
+ rxframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample)
+ rxframe = np.fromstring(rxframe_bytes, dtype=np.complex64)
+ else:
+ rxframe = np.array([], dtype=np.complex64)
+
+ if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
+ logging.debug('txframe: min {}, max {}, median {}'.format(
+ np.min(np.abs(txframe)),
+ np.max(np.abs(txframe)),
+ np.median(np.abs(txframe))))
+
+ logging.debug('rxframe: min {}, max {}, median {}'.format(
+ np.min(np.abs(rxframe)),
+ np.max(np.abs(rxframe)),
+ np.median(np.abs(rxframe))))
+
+ logging.debug("Disconnecting")
+ s.close()
+
+ return txframe, tx_ts, rxframe, rx_ts
+
+
+ def get_samples(self):
+ """Connect to ODR-DabMod, retrieve TX and RX samples, load
+ into numpy arrays, and return a tuple
+ (txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median)
+ """
+
+ txframe, tx_ts, rxframe, rx_ts = self.receive_tcp()
+
+ # Normalize received signal with sent signal
+ rx_median = np.median(np.abs(rxframe))
+ rxframe = rxframe / rx_median * np.median(np.abs(txframe))
+
+ du = DU.Dab_Util(self.c, self.samplerate)
+ txframe_aligned, rxframe_aligned = du.subsample_align(txframe, rxframe)
+
+ logging.info(
+ "Measurement done, tx %d %s, rx %d %s, tx aligned %d %s, rx aligned %d %s"
+ % (len(txframe), txframe.dtype, len(rxframe), rxframe.dtype,
+ len(txframe_aligned), txframe_aligned.dtype, len(rxframe_aligned), rxframe_aligned.dtype) )
+
+ return txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Measure_Shoulders.py b/python/dpd/src/Measure_Shoulders.py
new file mode 100644
index 0000000..fd90050
--- /dev/null
+++ b/python/dpd/src/Measure_Shoulders.py
@@ -0,0 +1,158 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, calculate peak to shoulder difference.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+import multiprocessing
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+def plt_next_axis(sub_rows, sub_cols, i_sub):
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ return i_sub, ax
+
+
+def plt_annotate(ax, x, y, title=None, legend_loc=None):
+ ax.set_xlabel(x)
+ ax.set_ylabel(y)
+ if title is not None:
+ ax.set_title(title)
+ if legend_loc is not None:
+ ax.legend(loc=legend_loc)
+
+
+def calc_fft_db(signal, offset, c):
+ fft = np.fft.fftshift(np.fft.fft(signal[offset:offset + c.MS_FFT_size]))
+ fft_db = 20 * np.log10(np.abs(fft))
+ return fft_db
+
+
+def _calc_peak(fft, c):
+ assert fft.shape == (c.MS_FFT_size,), fft.shape
+ idxs = (c.MS_peak_start, c.MS_peak_end)
+ peak = np.mean(fft[idxs[0]:idxs[1]])
+ return peak, idxs
+
+
+def _calc_shoulder_hight(fft_db, c):
+ assert fft_db.shape == (c.MS_FFT_size,), fft_db.shape
+ idxs_left = (c.MS_shoulder_left_start, c.MS_shoulder_left_end)
+ idxs_right = (c.MS_shoulder_right_start, c.MS_shoulder_right_end)
+
+ shoulder_left = np.mean(fft_db[idxs_left[0]:idxs_left[1]])
+ shoulder_right = np.mean(fft_db[idxs_right[0]:idxs_right[1]])
+
+ shoulder = np.mean((shoulder_left, shoulder_right))
+ return shoulder, (idxs_left, idxs_right)
+
+
+def calc_shoulder(fft, c):
+ peak = _calc_peak(fft, c)[0]
+ shoulder = _calc_shoulder_hight(fft, c)[0]
+ assert (peak >= shoulder), (peak, shoulder)
+ return peak, shoulder
+
+
+def shoulder_from_sig_offset(arg):
+ signal, offset, c = arg
+ fft_db = calc_fft_db(signal, offset, c)
+ peak, shoulder = calc_shoulder(fft_db, c)
+ return peak - shoulder, peak, shoulder
+
+
+class Measure_Shoulders:
+ """Calculate difference between the DAB signal and the shoulder hight in the
+ power spectrum"""
+
+ def __init__(self, c):
+ self.c = c
+ self.plot = c.MS_plot
+
+ def _plot(self, signal):
+ if self.c.plot_location is None:
+ return
+
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_sync_subsample_aligned.png"
+
+ fft = calc_fft_db(signal, 100, self.c)
+ peak, idxs_peak = _calc_peak(fft, self.c)
+ shoulder, idxs_sh = _calc_shoulder_hight(fft, self.c)
+
+ sub_rows = 1
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub, ax = plt_next_axis(sub_rows, sub_cols, i_sub)
+ ax.scatter(np.arange(fft.shape[0]), fft, s=0.1,
+ label="FFT",
+ color="red")
+ ax.plot(idxs_peak, (peak, peak))
+ ax.plot(idxs_sh[0], (shoulder, shoulder), color='blue')
+ ax.plot(idxs_sh[1], (shoulder, shoulder), color='blue')
+ plt_annotate(ax, "Frequency", "Magnitude [dB]", None, 4)
+
+ ax.text(100, -17, str(calc_shoulder(fft, self.c)))
+
+ ax.set_ylim(-20, 30)
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ def average_shoulders(self, signal, n_avg=None):
+ if not self.c.MS_enable:
+ logging.info("Shoulder Measurement disabled via Const.py")
+ return None
+
+ assert signal.shape[0] > 4 * self.c.MS_FFT_size
+ if n_avg is None:
+ n_avg = self.c.MS_averaging_size
+
+ off_min = 0
+ off_max = signal.shape[0] - self.c.MS_FFT_size
+ offsets = np.linspace(off_min, off_max, num=n_avg, dtype=int)
+
+ args = zip(
+ [signal, ] * offsets.shape[0],
+ offsets,
+ [self.c, ] * offsets.shape[0]
+ )
+
+ pool = multiprocessing.Pool(self.c.MS_n_proc)
+ res = pool.map(shoulder_from_sig_offset, args)
+ shoulders_diff, shoulders, peaks = zip(*res)
+
+ if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot:
+ self._plot(signal)
+
+ return np.mean(shoulders_diff), np.mean(shoulders), np.mean(peaks)
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Model.py b/python/dpd/src/Model.py
new file mode 100644
index 0000000..b2c303f
--- /dev/null
+++ b/python/dpd/src/Model.py
@@ -0,0 +1,32 @@
+# -*- coding: utf-8 -*-
+from src.Model_Poly import Poly
+from src.Model_Lut import Lut
+
+def select_model_from_dpddata(dpddata):
+ if dpddata[0] == 'lut':
+ return Lut
+ elif dpddata[0] == 'poly':
+ return Poly
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2017 Matthias P. Braendli
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Model_AM.py b/python/dpd/src/Model_AM.py
new file mode 100644
index 0000000..75b226f
--- /dev/null
+++ b/python/dpd/src/Model_AM.py
@@ -0,0 +1,122 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, model implementation for Amplitude and not Phase
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+def is_npfloat32(array):
+ assert isinstance(array, np.ndarray), type(array)
+ assert array.dtype == np.float32, array.dtype
+ assert array.flags.contiguous
+ assert not any(np.isnan(array))
+
+
+def check_input_get_next_coefs(tx_dpd, rx_received):
+ is_npfloat32(tx_dpd)
+ is_npfloat32(rx_received)
+
+
+def poly(sig):
+ return np.array([sig ** i for i in range(1, 6)]).T
+
+
+def fit_poly(tx_abs, rx_abs):
+ return np.linalg.lstsq(poly(rx_abs), tx_abs, rcond=None)[0]
+
+
+def calc_line(coefs, min_amp, max_amp):
+ rx_range = np.linspace(min_amp, max_amp)
+ tx_est = np.sum(poly(rx_range) * coefs, axis=1)
+ return tx_est, rx_range
+
+
+class Model_AM:
+ """Calculates new coefficients using the measurement and the previous
+ coefficients"""
+
+ def __init__(self,
+ c,
+ learning_rate_am=1,
+ plot=False):
+ self.c = c
+
+ self.learning_rate_am = learning_rate_am
+ self.plot = plot
+
+ def _plot(self, tx_dpd, rx_received, coefs_am, coefs_am_new):
+ if self.plot and self.c.plot_location is not None:
+ tx_range, rx_est = calc_line(coefs_am, 0, 0.6)
+ tx_range_new, rx_est_new = calc_line(coefs_am_new, 0, 0.6)
+
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_Model_AM.png"
+ sub_rows = 1
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_range, rx_est,
+ label="Estimated TX",
+ alpha=0.3,
+ color="gray")
+ ax.plot(tx_range_new, rx_est_new,
+ label="New Estimated TX",
+ color="red")
+ ax.scatter(tx_dpd, rx_received,
+ label="Binned Data",
+ color="blue",
+ s=1)
+ ax.set_title("Model_AM")
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("RX Amplitude")
+ ax.set_xlim(-0.5, 1.5)
+ ax.legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ def get_next_coefs(self, tx_dpd, rx_received, coefs_am):
+ """Calculate the next AM/AM coefficients using the extracted
+ statistic of TX and RX amplitude"""
+ check_input_get_next_coefs(tx_dpd, rx_received)
+
+ coefs_am_new = fit_poly(tx_dpd, rx_received)
+ coefs_am_new = coefs_am + \
+ self.learning_rate_am * (coefs_am_new - coefs_am)
+
+ self._plot(tx_dpd, rx_received, coefs_am, coefs_am_new)
+
+ return coefs_am_new
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Model_Lut.py b/python/dpd/src/Model_Lut.py
new file mode 100644
index 0000000..e70fdb0
--- /dev/null
+++ b/python/dpd/src/Model_Lut.py
@@ -0,0 +1,60 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, model implementation using polynomial
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import os
+import logging
+import numpy as np
+
+class Lut:
+ """Implements a model that calculates lookup table coefficients"""
+
+ def __init__(self,
+ c,
+ learning_rate=1.,
+ plot=False):
+ """
+
+ :rtype:
+ """
+ logging.debug("Initialising LUT Model")
+ self.c = c
+ self.learning_rate = learning_rate
+ self.plot = plot
+ self.reset_coefs()
+
+ def reset_coefs(self):
+ self.scalefactor = 0xFFFFFFFF # max uint32_t value
+ self.lut = np.ones(32, dtype=np.complex64)
+
+ def train(self, tx_abs, rx_abs, phase_diff):
+ pass
+
+ def get_dpd_data(self):
+ return "lut", self.scalefactor, self.lut
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2017 Matthias P. Braendli
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Model_PM.py b/python/dpd/src/Model_PM.py
new file mode 100644
index 0000000..7b80bf3
--- /dev/null
+++ b/python/dpd/src/Model_PM.py
@@ -0,0 +1,124 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, model implementation for Amplitude and not Phase
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+def is_npfloat32(array):
+ assert isinstance(array, np.ndarray), type(array)
+ assert array.dtype == np.float32, array.dtype
+ assert array.flags.contiguous
+ assert not any(np.isnan(array))
+
+
+def check_input_get_next_coefs(tx_dpd, phase_diff):
+ is_npfloat32(tx_dpd)
+ is_npfloat32(phase_diff)
+
+
+class Model_PM:
+ """Calculates new coefficients using the measurement and the previous
+ coefficients"""
+
+ def __init__(self,
+ c,
+ learning_rate_pm=1,
+ plot=False):
+ self.c = c
+
+ self.learning_rate_pm = learning_rate_pm
+ self.plot = plot
+
+ def _plot(self, tx_dpd, phase_diff, coefs_pm, coefs_pm_new):
+ if self.plot and self.c.plot_location is not None:
+ tx_range, phase_diff_est = self.calc_line(coefs_pm, 0, 0.6)
+ tx_range_new, phase_diff_est_new = self.calc_line(coefs_pm_new, 0, 0.6)
+
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_Model_PM.png"
+ sub_rows = 1
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(tx_range, phase_diff_est,
+ label="Estimated Phase Diff",
+ alpha=0.3,
+ color="gray")
+ ax.plot(tx_range_new, phase_diff_est_new,
+ label="New Estimated Phase Diff",
+ color="red")
+ ax.scatter(tx_dpd, phase_diff,
+ label="Binned Data",
+ color="blue",
+ s=1)
+ ax.set_title("Model_PM")
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("Phase DIff")
+ ax.legend(loc=4)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ def _discard_small_values(self, tx_dpd, phase_diff):
+ """ Assumes that the phase for small tx amplitudes is zero"""
+ mask = tx_dpd < self.c.MPM_tx_min
+ phase_diff[mask] = 0
+ return tx_dpd, phase_diff
+
+ def poly(self, sig):
+ return np.array([sig ** i for i in range(0, 5)]).T
+
+ def fit_poly(self, tx_abs, phase_diff):
+ return np.linalg.lstsq(self.poly(tx_abs), phase_diff, rcond=None)[0]
+
+ def calc_line(self, coefs, min_amp, max_amp):
+ tx_range = np.linspace(min_amp, max_amp)
+ phase_diff = np.sum(self.poly(tx_range) * coefs, axis=1)
+ return tx_range, phase_diff
+
+ def get_next_coefs(self, tx_dpd, phase_diff, coefs_pm):
+ """Calculate the next AM/PM coefficients using the extracted
+ statistic of TX amplitude and phase difference"""
+ tx_dpd, phase_diff = self._discard_small_values(tx_dpd, phase_diff)
+ check_input_get_next_coefs(tx_dpd, phase_diff)
+
+ coefs_pm_new = self.fit_poly(tx_dpd, phase_diff)
+
+ coefs_pm_new = coefs_pm + self.learning_rate_pm * (coefs_pm_new - coefs_pm)
+ self._plot(tx_dpd, phase_diff, coefs_pm, coefs_pm_new)
+
+ return coefs_pm_new
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Model_Poly.py b/python/dpd/src/Model_Poly.py
new file mode 100644
index 0000000..cdfd319
--- /dev/null
+++ b/python/dpd/src/Model_Poly.py
@@ -0,0 +1,101 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, model implementation using polynomial
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import os
+import logging
+import numpy as np
+
+import src.Model_AM as Model_AM
+import src.Model_PM as Model_PM
+
+
+def assert_np_float32(x):
+ assert isinstance(x, np.ndarray)
+ assert x.dtype == np.float32
+ assert x.flags.contiguous
+
+
+def _check_input_get_next_coefs(tx_abs, rx_abs, phase_diff):
+ assert_np_float32(tx_abs)
+ assert_np_float32(rx_abs)
+ assert_np_float32(phase_diff)
+
+ assert tx_abs.shape == rx_abs.shape, \
+ "tx_abs.shape {}, rx_abs.shape {}".format(
+ tx_abs.shape, rx_abs.shape)
+ assert tx_abs.shape == phase_diff.shape, \
+ "tx_abs.shape {}, phase_diff.shape {}".format(
+ tx_abs.shape, phase_diff.shape)
+
+
+class Poly:
+ """Calculates new coefficients using the measurement and the previous
+ coefficients"""
+
+ def __init__(self,
+ c,
+ learning_rate_am=1.0,
+ learning_rate_pm=1.0):
+ self.c = c
+ self.plot = c.MDL_plot
+
+ self.learning_rate_am = learning_rate_am
+ self.learning_rate_pm = learning_rate_pm
+
+ self.reset_coefs()
+
+ self.model_am = Model_AM.Model_AM(c, plot=self.plot)
+ self.model_pm = Model_PM.Model_PM(c, plot=self.plot)
+
+ def reset_coefs(self):
+ self.coefs_am = np.zeros(5, dtype=np.float32)
+ self.coefs_am[0] = 1
+ self.coefs_pm = np.zeros(5, dtype=np.float32)
+
+ def train(self, tx_abs, rx_abs, phase_diff, lr=None):
+ """
+ :type tx_abs: np.ndarray
+ :type rx_abs: np.ndarray
+ :type phase_diff: np.ndarray
+ :type lr: float
+ """
+ _check_input_get_next_coefs(tx_abs, rx_abs, phase_diff)
+
+ if not lr is None:
+ self.model_am.learning_rate_am = lr
+ self.model_pm.learning_rate_pm = lr
+
+ coefs_am_new = self.model_am.get_next_coefs(tx_abs, rx_abs, self.coefs_am)
+ coefs_pm_new = self.model_pm.get_next_coefs(tx_abs, phase_diff, self.coefs_pm)
+
+ self.coefs_am = self.coefs_am + (coefs_am_new - self.coefs_am) * self.learning_rate_am
+ self.coefs_pm = self.coefs_pm + (coefs_pm_new - self.coefs_pm) * self.learning_rate_pm
+
+ def get_dpd_data(self):
+ return "poly", self.coefs_am, self.coefs_pm
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/RX_Agc.py b/python/dpd/src/RX_Agc.py
new file mode 100644
index 0000000..f778dee
--- /dev/null
+++ b/python/dpd/src/RX_Agc.py
@@ -0,0 +1,166 @@
+# -*- coding: utf-8 -*-
+#
+# Automatic Gain Control
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+import time
+import numpy as np
+import matplotlib
+matplotlib.use('agg')
+import matplotlib.pyplot as plt
+
+import src.Adapt as Adapt
+import src.Measure as Measure
+
+class Agc:
+ """The goal of the automatic gain control is to set the
+ RX gain to a value at which all received amplitudes can
+ be detected. This means that the maximum possible amplitude
+ should be quantized at the highest possible digital value.
+
+ A problem we have to face, is that the estimation of the
+ maximum amplitude by applying the max() function is very
+ unstable. This is due to the maximum’s rareness. Therefore
+ we estimate a far more robust value, such as the median,
+ and then approximate the maximum amplitude from it.
+
+ Given this, we tune the RX gain in such a way, that the
+ received signal fulfills our desired property, of having
+ all amplitudes properly quantized."""
+
+ def __init__(self, measure, adapt, c):
+ assert isinstance(measure, Measure.Measure)
+ assert isinstance(adapt, Adapt.Adapt)
+ self.measure = measure
+ self.adapt = adapt
+ self.min_rxgain = c.RAGC_min_rxgain
+ self.rxgain = self.min_rxgain
+ self.peak_to_median = 1./c.RAGC_rx_median_target
+
+ def run(self):
+ self.adapt.set_rxgain(self.rxgain)
+
+ for i in range(2):
+ # Measure
+ txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median= \
+ self.measure.get_samples()
+
+ # Estimate Maximum
+ rx_peak = self.peak_to_median * rx_median
+ correction_factor = 20*np.log10(1/rx_peak)
+ self.rxgain = self.rxgain + correction_factor
+
+ assert self.min_rxgain <= self.rxgain, ("Desired RX Gain is {} which is smaller than the minimum of {}".format(
+ self.rxgain, self.min_rxgain))
+
+ logging.info("RX Median {:1.4f}, estimated peak {:1.4f}, correction factor {:1.4f}, new RX gain {:1.4f}".format(
+ rx_median, rx_peak, correction_factor, self.rxgain
+ ))
+
+ self.adapt.set_rxgain(self.rxgain)
+ time.sleep(0.5)
+
+ def plot_estimates(self):
+ """Plots the estimate of for Max, Median, Mean for different
+ number of samples."""
+ if self.c.plot_location is None:
+ return
+
+ self.adapt.set_rxgain(self.min_rxgain)
+ time.sleep(1)
+
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_agc.png"
+ fig, axs = plt.subplots(2, 2, figsize=(3*6,1*6))
+ axs = axs.ravel()
+
+ for j in range(5):
+ txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median =\
+ self.measure.get_samples()
+
+ rxframe_aligned_abs = np.abs(rxframe_aligned)
+
+ x = np.arange(100, rxframe_aligned_abs.shape[0], dtype=int)
+ rx_max_until = []
+ rx_median_until = []
+ rx_mean_until = []
+ for i in x:
+ rx_max_until.append(np.max(rxframe_aligned_abs[:i]))
+ rx_median_until.append(np.median(rxframe_aligned_abs[:i]))
+ rx_mean_until.append(np.mean(rxframe_aligned_abs[:i]))
+
+ axs[0].plot(x,
+ rx_max_until,
+ label="Run {}".format(j+1),
+ color=matplotlib.colors.hsv_to_rgb((1./(j+1.),0.8,0.7)),
+ linestyle="-", linewidth=0.25)
+ axs[0].set_xlabel("Samples")
+ axs[0].set_ylabel("Amplitude")
+ axs[0].set_title("Estimation for Maximum RX Amplitude")
+ axs[0].legend()
+
+ axs[1].plot(x,
+ rx_median_until,
+ label="Run {}".format(j+1),
+ color=matplotlib.colors.hsv_to_rgb((1./(j+1.),0.9,0.7)),
+ linestyle="-", linewidth=0.25)
+ axs[1].set_xlabel("Samples")
+ axs[1].set_ylabel("Amplitude")
+ axs[1].set_title("Estimation for Median RX Amplitude")
+ axs[1].legend()
+ ylim_1 = axs[1].get_ylim()
+
+ axs[2].plot(x,
+ rx_mean_until,
+ label="Run {}".format(j+1),
+ color=matplotlib.colors.hsv_to_rgb((1./(j+1.),0.9,0.7)),
+ linestyle="-", linewidth=0.25)
+ axs[2].set_xlabel("Samples")
+ axs[2].set_ylabel("Amplitude")
+ axs[2].set_title("Estimation for Mean RX Amplitude")
+ ylim_2 = axs[2].get_ylim()
+ axs[2].legend()
+
+ axs[1].set_ylim(min(ylim_1[0], ylim_2[0]),
+ max(ylim_1[1], ylim_2[1]))
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+
+ axs[3].hist(rxframe_aligned_abs, bins=60)
+ axs[3].set_xlabel("Amplitude")
+ axs[3].set_ylabel("Frequency")
+ axs[3].set_title("Histogram of Amplitudes")
+ axs[3].legend()
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/Symbol_align.py b/python/dpd/src/Symbol_align.py
new file mode 100644
index 0000000..2a17a65
--- /dev/null
+++ b/python/dpd/src/Symbol_align.py
@@ -0,0 +1,193 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, Modulation Error Rate.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+import numpy as np
+import scipy
+import matplotlib
+
+matplotlib.use('agg')
+import matplotlib.pyplot as plt
+
+
+def _remove_outliers(x, stds=5):
+ deviation_from_mean = np.abs(x - np.mean(x))
+ inlier_idxs = deviation_from_mean < stds * np.std(x)
+ x = x[inlier_idxs]
+ return x
+
+
+def _calc_delta_angle(fft):
+ # Introduce invariance against carrier
+ angles = np.angle(fft) % (np.pi / 2.)
+
+ # Calculate Angle difference and compensate jumps
+ deltas_angle = np.diff(angles)
+ deltas_angle[deltas_angle > np.pi / 4.] = \
+ deltas_angle[deltas_angle > np.pi / 4.] - np.pi / 2.
+ deltas_angle[-deltas_angle > np.pi / 4.] = \
+ deltas_angle[-deltas_angle > np.pi / 4.] + np.pi / 2.
+ deltas_angle = _remove_outliers(deltas_angle)
+
+ delta_angle = np.mean(deltas_angle)
+
+ return delta_angle
+
+
+class Symbol_align:
+ """
+ Find the phase offset to the start of the DAB symbols in an
+ unaligned dab signal.
+ """
+
+ def __init__(self, c, plot=False):
+ self.c = c
+ self.plot = plot
+ pass
+
+ def _calc_offset_to_first_symbol_without_prefix(self, tx):
+ tx_orig = tx[0:-self.c.T_U]
+ tx_cut_prefix = tx[self.c.T_U:]
+
+ tx_product = np.abs(tx_orig - tx_cut_prefix)
+ tx_product_avg = np.correlate(
+ tx_product,
+ np.ones(self.c.T_C),
+ mode='valid')
+ tx_product_avg_min_filt = \
+ scipy.ndimage.filters.minimum_filter1d(
+ tx_product_avg,
+ int(1.5 * self.c.T_S)
+ )
+ peaks = np.ravel(np.where(tx_product_avg == tx_product_avg_min_filt))
+
+ offset = peaks[np.argmin([tx_product_avg[peak] for peak in peaks])]
+
+ if self.plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_Symbol_align.png"
+
+ fig = plt.figure(figsize=(9, 9))
+
+ ax = fig.add_subplot(4, 1, 1)
+ ax.plot(tx_product)
+ ylim = ax.get_ylim()
+ for peak in peaks:
+ ax.plot((peak, peak), (ylim[0], ylim[1]))
+ if peak == offset:
+ ax.text(peak, ylim[0] + 0.3 * np.diff(ylim), "offset", rotation=90)
+ else:
+ ax.text(peak, ylim[0] + 0.2 * np.diff(ylim), "peak", rotation=90)
+ ax.set_xlabel("Sample")
+ ax.set_ylabel("Conj. Product")
+ ax.set_title("Difference with shifted self")
+
+ ax = fig.add_subplot(4, 1, 2)
+ ax.plot(tx_product_avg)
+ ylim = ax.get_ylim()
+ for peak in peaks:
+ ax.plot((peak, peak), (ylim[0], ylim[1]))
+ if peak == offset:
+ ax.text(peak, ylim[0] + 0.3 * np.diff(ylim), "offset", rotation=90)
+ else:
+ ax.text(peak, ylim[0] + 0.2 * np.diff(ylim), "peak", rotation=90)
+ ax.set_xlabel("Sample")
+ ax.set_ylabel("Conj. Product")
+ ax.set_title("Moving Average")
+
+ ax = fig.add_subplot(4, 1, 3)
+ ax.plot(tx_product_avg_min_filt)
+ ylim = ax.get_ylim()
+ for peak in peaks:
+ ax.plot((peak, peak), (ylim[0], ylim[1]))
+ if peak == offset:
+ ax.text(peak, ylim[0] + 0.3 * np.diff(ylim), "offset", rotation=90)
+ else:
+ ax.text(peak, ylim[0] + 0.2 * np.diff(ylim), "peak", rotation=90)
+ ax.set_xlabel("Sample")
+ ax.set_ylabel("Conj. Product")
+ ax.set_title("Min Filter")
+
+ ax = fig.add_subplot(4, 1, 4)
+ tx_product_crop = tx_product[peaks[0] - 50:peaks[0] + 50]
+ x = range(tx_product.shape[0])[peaks[0] - 50:peaks[0] + 50]
+ ax.plot(x, tx_product_crop)
+ ylim = ax.get_ylim()
+ ax.plot((peaks[0], peaks[0]), (ylim[0], ylim[1]))
+ ax.set_xlabel("Sample")
+ ax.set_ylabel("Conj. Product")
+ ax.set_title("Difference with shifted self")
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ plt.close(fig)
+
+ # "offset" measures where the shifted signal matches the
+ # original signal. Therefore we have to subtract the size
+ # of the shift to find the offset of the symbol start.
+ return (offset + self.c.T_C) % self.c.T_S
+
+ def _delta_angle_to_samples(self, angle):
+ return - angle / self.c.phase_offset_per_sample
+
+ def _calc_sample_offset(self, sig):
+ assert sig.shape[0] == self.c.T_U, \
+ "Input length is not a Symbol without cyclic prefix"
+
+ fft = np.fft.fftshift(np.fft.fft(sig))
+ fft_crop = np.delete(fft[self.c.FFT_start:self.c.FFT_end], self.c.FFT_delete)
+ delta_angle = _calc_delta_angle(fft_crop)
+ delta_sample = self._delta_angle_to_samples(delta_angle)
+ delta_sample_int = np.round(delta_sample).astype(int)
+ error = np.abs(delta_sample_int - delta_sample)
+ if error > 0.1:
+ raise RuntimeError("Could not calculate " \
+ "sample offset. Error {}".format(error))
+ return delta_sample_int
+
+ def calc_offset(self, tx):
+ """Calculate the offset the first symbol"""
+ off_sym = self._calc_offset_to_first_symbol_without_prefix(
+ tx)
+ off_sam = self._calc_sample_offset(
+ tx[off_sym:off_sym + self.c.T_U])
+ off = (off_sym + off_sam) % self.c.T_S
+
+ assert self._calc_sample_offset(tx[off:off + self.c.T_U]) == 0, \
+ "Failed to calculate offset"
+ return off
+
+ def crop_symbol_without_cyclic_prefix(self, tx):
+ off = self.calc_offset(tx)
+ return tx[
+ off:
+ off + self.c.T_U
+ ]
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/TX_Agc.py b/python/dpd/src/TX_Agc.py
new file mode 100644
index 0000000..309193d
--- /dev/null
+++ b/python/dpd/src/TX_Agc.py
@@ -0,0 +1,131 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, Automatic Gain Control.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import datetime
+import os
+import logging
+import time
+import numpy as np
+import matplotlib
+
+matplotlib.use('agg')
+import matplotlib.pyplot as plt
+
+import src.Adapt as Adapt
+
+
+# TODO fix for float tx_gain
+class TX_Agc:
+ def __init__(self,
+ adapt,
+ c):
+ """
+ In order to avoid digital clipping, this class increases the
+ TX gain and reduces the digital gain. Digital clipping happens
+ when the digital analog converter receives values greater than
+ it's maximal output. This class solves that problem by adapting
+ the TX gain in a way that the peaks of the TX signal are in a
+ specified range. The TX gain is adapted accordingly. The TX peaks
+ are approximated by estimating it based on the signal median.
+
+ :param adapt: Instance of Adapt Class to update
+ txgain and coefficients
+ :param max_txgain: limit for TX gain
+ :param tx_median_threshold_max: if the median of TX is larger
+ than this value, then the digital gain is reduced
+ :param tx_median_threshold_min: if the median of TX is smaller
+ than this value, then the digital gain is increased
+ :param tx_median_target: The digital gain is reduced in a way that
+ the median TX value is expected to be lower than this value.
+ """
+
+ assert isinstance(adapt, Adapt.Adapt)
+ self.adapt = adapt
+ self.max_txgain = c.TAGC_max_txgain
+ self.txgain = self.max_txgain
+
+ self.tx_median_threshold_tolerate_max = c.TAGC_tx_median_max
+ self.tx_median_threshold_tolerate_min = c.TAGC_tx_median_min
+ self.tx_median_target = c.TAGC_tx_median_target
+
+ def _calc_new_tx_gain(self, tx_median):
+ delta_db = 20 * np.log10(self.tx_median_target / tx_median)
+ new_txgain = self.adapt.get_txgain() - delta_db
+ assert new_txgain < self.max_txgain, \
+ "TX_Agc failed. New TX gain of {} is too large.".format(
+ new_txgain
+ )
+ return new_txgain, delta_db
+
+ def _calc_digital_gain(self, delta_db):
+ digital_gain_factor = 10 ** (delta_db / 20.)
+ digital_gain = self.adapt.get_digital_gain() * digital_gain_factor
+ return digital_gain, digital_gain_factor
+
+ def _set_tx_gain(self, new_txgain):
+ self.adapt.set_txgain(new_txgain)
+ txgain = self.adapt.get_txgain()
+ return txgain
+
+ def _have_to_adapt(self, tx_median):
+ too_large = tx_median > self.tx_median_threshold_tolerate_max
+ too_small = tx_median < self.tx_median_threshold_tolerate_min
+ return too_large or too_small
+
+ def adapt_if_necessary(self, tx):
+ tx_median = np.median(np.abs(tx))
+
+ if self._have_to_adapt(tx_median):
+ # Calculate new values
+ new_txgain, delta_db = self._calc_new_tx_gain(tx_median)
+ digital_gain, digital_gain_factor = \
+ self._calc_digital_gain(delta_db)
+
+ # Set new values.
+ # Avoid temorary increase of output power with correct order
+ if digital_gain_factor < 1:
+ self.adapt.set_digital_gain(digital_gain)
+ time.sleep(0.5)
+ txgain = self._set_tx_gain(new_txgain)
+ time.sleep(1)
+ else:
+ txgain = self._set_tx_gain(new_txgain)
+ time.sleep(1)
+ self.adapt.set_digital_gain(digital_gain)
+ time.sleep(0.5)
+
+ logging.info(
+ "digital_gain = {}, txgain_new = {}, " \
+ "delta_db = {}, tx_median {}, " \
+ "digital_gain_factor = {}".
+ format(digital_gain, txgain, delta_db,
+ tx_median, digital_gain_factor))
+
+ return True
+ return False
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/__init__.py b/python/dpd/src/__init__.py
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/python/dpd/src/__init__.py
diff --git a/python/dpd/src/phase_align.py b/python/dpd/src/phase_align.py
new file mode 100644
index 0000000..8654333
--- /dev/null
+++ b/python/dpd/src/phase_align.py
@@ -0,0 +1,98 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, phase-align a signal against a reference.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+import datetime
+import os
+import logging
+import numpy as np
+import matplotlib.pyplot as plt
+
+
+def phase_align(sig, ref_sig, plot=False):
+ """Do phase alignment for sig relative to the reference signal
+ ref_sig.
+
+ Returns the aligned signal"""
+
+ angle_diff = (np.angle(sig) - np.angle(ref_sig)) % (2. * np.pi)
+
+ real_diffs = np.cos(angle_diff)
+ imag_diffs = np.sin(angle_diff)
+
+ if plot and self.c.plot_location is not None:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = self.c.plot_location + "/" + dt + "_phase_align.png"
+
+ plt.subplot(511)
+ plt.hist(angle_diff, bins=60, label="Angle Diff")
+ plt.xlabel("Angle")
+ plt.ylabel("Count")
+ plt.legend(loc=4)
+
+ plt.subplot(512)
+ plt.hist(real_diffs, bins=60, label="Real Diff")
+ plt.xlabel("Real Part")
+ plt.ylabel("Count")
+ plt.legend(loc=4)
+
+ plt.subplot(513)
+ plt.hist(imag_diffs, bins=60, label="Imaginary Diff")
+ plt.xlabel("Imaginary Part")
+ plt.ylabel("Count")
+ plt.legend(loc=4)
+
+ plt.subplot(514)
+ plt.plot(np.angle(ref_sig[:128]), label="ref_sig")
+ plt.plot(np.angle(sig[:128]), label="sig")
+ plt.xlabel("Angle")
+ plt.ylabel("Sample")
+ plt.legend(loc=4)
+
+ real_diff = np.median(real_diffs)
+ imag_diff = np.median(imag_diffs)
+
+ angle = np.angle(real_diff + 1j * imag_diff)
+
+ logging.debug(
+ "Compensating phase by {} rad, {} degree. real median {}, imag median {}".format(
+ angle, angle*180./np.pi, real_diff, imag_diff
+ ))
+ sig = sig * np.exp(1j * -angle)
+
+ if logging.getLogger().getEffectiveLevel() == logging.DEBUG and plot:
+ plt.subplot(515)
+ plt.plot(np.angle(ref_sig[:128]), label="ref_sig")
+ plt.plot(np.angle(sig[:128]), label="sig")
+ plt.xlabel("Angle")
+ plt.ylabel("Sample")
+ plt.legend(loc=4)
+ plt.tight_layout()
+ plt.savefig(fig_path)
+ plt.close()
+
+ return sig
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.
diff --git a/python/dpd/src/subsample_align.py b/python/dpd/src/subsample_align.py
new file mode 100755
index 0000000..20ae56b
--- /dev/null
+++ b/python/dpd/src/subsample_align.py
@@ -0,0 +1,111 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine, utility to do subsample alignment.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+import datetime
+import logging
+import os
+import numpy as np
+from scipy import optimize
+import matplotlib.pyplot as plt
+
+def gen_omega(length):
+ if (length % 2) == 1:
+ raise ValueError("Needs an even length array.")
+
+ halflength = int(length / 2)
+ factor = 2.0 * np.pi / length
+
+ omega = np.zeros(length, dtype=np.float)
+ for i in range(halflength):
+ omega[i] = factor * i
+
+ for i in range(halflength, length):
+ omega[i] = factor * (i - length)
+
+ return omega
+
+
+def subsample_align(sig, ref_sig, plot_location=None):
+ """Do subsample alignment for sig relative to the reference signal
+ ref_sig. The delay between the two must be less than sample
+
+ Returns the aligned signal"""
+
+ n = len(sig)
+ if (n % 2) == 1:
+ raise ValueError("Needs an even length signal.")
+ halflen = int(n / 2)
+
+ fft_sig = np.fft.fft(sig)
+
+ omega = gen_omega(n)
+
+ def correlate_for_delay(tau):
+ # A subsample offset between two signals corresponds, in the frequency
+ # domain, to a linearly increasing phase shift, whose slope
+ # corresponds to the delay.
+ #
+ # Here, we build this phase shift in rotate_vec, and multiply it with
+ # our signal.
+
+ rotate_vec = np.exp(1j * tau * omega)
+ # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the
+ # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which
+ # is both the maximum positive and negative frequency.
+ # I don't remember why we handle it differently.
+ rotate_vec[halflen] = np.cos(np.pi * tau)
+
+ corr_sig = np.fft.ifft(rotate_vec * fft_sig)
+
+ return -np.abs(np.sum(np.conj(corr_sig) * ref_sig))
+
+ optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1, 1), method='bounded',
+ options={'disp': True})
+
+ if optim_result.success:
+ best_tau = optim_result.x
+
+ if plot_location is not None:
+ corr = np.vectorize(correlate_for_delay)
+ ixs = np.linspace(-1, 1, 100)
+ taus = corr(ixs)
+
+ dt = datetime.datetime.now().isoformat()
+ tau_path = (plot_location + "/" + dt + "_tau.png")
+ plt.plot(ixs, taus)
+ plt.title("Subsample correlation, minimum is best: {}".format(best_tau))
+ plt.savefig(tau_path)
+ plt.close()
+
+ # Prepare rotate_vec = fft_sig with rotated phase
+ rotate_vec = np.exp(1j * best_tau * omega)
+ rotate_vec[halflen] = np.cos(np.pi * best_tau)
+ return np.fft.ifft(rotate_vec * fft_sig).astype(np.complex64)
+ else:
+ # print("Could not optimize: " + optim_result.message)
+ return np.zeros(0, dtype=np.complex64)
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.