summaryrefslogtreecommitdiffstats
path: root/python/dpd/src/Symbol_align.py
diff options
context:
space:
mode:
Diffstat (limited to 'python/dpd/src/Symbol_align.py')
-rw-r--r--python/dpd/src/Symbol_align.py193
1 files changed, 0 insertions, 193 deletions
diff --git a/python/dpd/src/Symbol_align.py b/python/dpd/src/Symbol_align.py
deleted file mode 100644
index 2a17a65..0000000
--- a/python/dpd/src/Symbol_align.py
+++ /dev/null
@@ -1,193 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, Modulation Error Rate.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import scipy
-import matplotlib
-
-matplotlib.use('agg')
-import matplotlib.pyplot as plt
-
-
-def _remove_outliers(x, stds=5):
- deviation_from_mean = np.abs(x - np.mean(x))
- inlier_idxs = deviation_from_mean < stds * np.std(x)
- x = x[inlier_idxs]
- return x
-
-
-def _calc_delta_angle(fft):
- # Introduce invariance against carrier
- angles = np.angle(fft) % (np.pi / 2.)
-
- # Calculate Angle difference and compensate jumps
- deltas_angle = np.diff(angles)
- deltas_angle[deltas_angle > np.pi / 4.] = \
- deltas_angle[deltas_angle > np.pi / 4.] - np.pi / 2.
- deltas_angle[-deltas_angle > np.pi / 4.] = \
- deltas_angle[-deltas_angle > np.pi / 4.] + np.pi / 2.
- deltas_angle = _remove_outliers(deltas_angle)
-
- delta_angle = np.mean(deltas_angle)
-
- return delta_angle
-
-
-class Symbol_align:
- """
- Find the phase offset to the start of the DAB symbols in an
- unaligned dab signal.
- """
-
- def __init__(self, c, plot=False):
- self.c = c
- self.plot = plot
- pass
-
- def _calc_offset_to_first_symbol_without_prefix(self, tx):
- tx_orig = tx[0:-self.c.T_U]
- tx_cut_prefix = tx[self.c.T_U:]
-
- tx_product = np.abs(tx_orig - tx_cut_prefix)
- tx_product_avg = np.correlate(
- tx_product,
- np.ones(self.c.T_C),
- mode='valid')
- tx_product_avg_min_filt = \
- scipy.ndimage.filters.minimum_filter1d(
- tx_product_avg,
- int(1.5 * self.c.T_S)
- )
- peaks = np.ravel(np.where(tx_product_avg == tx_product_avg_min_filt))
-
- offset = peaks[np.argmin([tx_product_avg[peak] for peak in peaks])]
-
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_Symbol_align.png"
-
- fig = plt.figure(figsize=(9, 9))
-
- ax = fig.add_subplot(4, 1, 1)
- ax.plot(tx_product)
- ylim = ax.get_ylim()
- for peak in peaks:
- ax.plot((peak, peak), (ylim[0], ylim[1]))
- if peak == offset:
- ax.text(peak, ylim[0] + 0.3 * np.diff(ylim), "offset", rotation=90)
- else:
- ax.text(peak, ylim[0] + 0.2 * np.diff(ylim), "peak", rotation=90)
- ax.set_xlabel("Sample")
- ax.set_ylabel("Conj. Product")
- ax.set_title("Difference with shifted self")
-
- ax = fig.add_subplot(4, 1, 2)
- ax.plot(tx_product_avg)
- ylim = ax.get_ylim()
- for peak in peaks:
- ax.plot((peak, peak), (ylim[0], ylim[1]))
- if peak == offset:
- ax.text(peak, ylim[0] + 0.3 * np.diff(ylim), "offset", rotation=90)
- else:
- ax.text(peak, ylim[0] + 0.2 * np.diff(ylim), "peak", rotation=90)
- ax.set_xlabel("Sample")
- ax.set_ylabel("Conj. Product")
- ax.set_title("Moving Average")
-
- ax = fig.add_subplot(4, 1, 3)
- ax.plot(tx_product_avg_min_filt)
- ylim = ax.get_ylim()
- for peak in peaks:
- ax.plot((peak, peak), (ylim[0], ylim[1]))
- if peak == offset:
- ax.text(peak, ylim[0] + 0.3 * np.diff(ylim), "offset", rotation=90)
- else:
- ax.text(peak, ylim[0] + 0.2 * np.diff(ylim), "peak", rotation=90)
- ax.set_xlabel("Sample")
- ax.set_ylabel("Conj. Product")
- ax.set_title("Min Filter")
-
- ax = fig.add_subplot(4, 1, 4)
- tx_product_crop = tx_product[peaks[0] - 50:peaks[0] + 50]
- x = range(tx_product.shape[0])[peaks[0] - 50:peaks[0] + 50]
- ax.plot(x, tx_product_crop)
- ylim = ax.get_ylim()
- ax.plot((peaks[0], peaks[0]), (ylim[0], ylim[1]))
- ax.set_xlabel("Sample")
- ax.set_ylabel("Conj. Product")
- ax.set_title("Difference with shifted self")
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- # "offset" measures where the shifted signal matches the
- # original signal. Therefore we have to subtract the size
- # of the shift to find the offset of the symbol start.
- return (offset + self.c.T_C) % self.c.T_S
-
- def _delta_angle_to_samples(self, angle):
- return - angle / self.c.phase_offset_per_sample
-
- def _calc_sample_offset(self, sig):
- assert sig.shape[0] == self.c.T_U, \
- "Input length is not a Symbol without cyclic prefix"
-
- fft = np.fft.fftshift(np.fft.fft(sig))
- fft_crop = np.delete(fft[self.c.FFT_start:self.c.FFT_end], self.c.FFT_delete)
- delta_angle = _calc_delta_angle(fft_crop)
- delta_sample = self._delta_angle_to_samples(delta_angle)
- delta_sample_int = np.round(delta_sample).astype(int)
- error = np.abs(delta_sample_int - delta_sample)
- if error > 0.1:
- raise RuntimeError("Could not calculate " \
- "sample offset. Error {}".format(error))
- return delta_sample_int
-
- def calc_offset(self, tx):
- """Calculate the offset the first symbol"""
- off_sym = self._calc_offset_to_first_symbol_without_prefix(
- tx)
- off_sam = self._calc_sample_offset(
- tx[off_sym:off_sym + self.c.T_U])
- off = (off_sym + off_sam) % self.c.T_S
-
- assert self._calc_sample_offset(tx[off:off + self.c.T_U]) == 0, \
- "Failed to calculate offset"
- return off
-
- def crop_symbol_without_cyclic_prefix(self, tx):
- off = self.calc_offset(tx)
- return tx[
- off:
- off + self.c.T_U
- ]
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.