diff options
Diffstat (limited to 'gui/dpd/Capture.py')
-rw-r--r-- | gui/dpd/Capture.py | 253 |
1 files changed, 0 insertions, 253 deletions
diff --git a/gui/dpd/Capture.py b/gui/dpd/Capture.py deleted file mode 100644 index 7d95f90..0000000 --- a/gui/dpd/Capture.py +++ /dev/null @@ -1,253 +0,0 @@ -# -*- coding: utf-8 -*- -# -# DPD Computation Engine, Capture TX signal and RX feedback using ODR-DabMod's -# DPD Server. -# -# Copyright (c) 2017 Andreas Steger -# Copyright (c) 2018 Matthias P. Braendli -# -# http://www.opendigitalradio.org -# -# This file is part of ODR-DabMod. -# -# ODR-DabMod is free software: you can redistribute it and/or modify -# it under the terms of the GNU General Public License as -# published by the Free Software Foundation, either version 3 of the -# License, or (at your option) any later version. -# -# ODR-DabMod is distributed in the hope that it will be useful, -# but WITHOUT ANY WARRANTY; without even the implied warranty of -# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -# GNU General Public License for more details. -# -# You should have received a copy of the GNU General Public License -# along with ODR-DabMod. If not, see <http://www.gnu.org/licenses/>. - -import socket -import struct -import os.path -import logging -import numpy as np -from scipy import signal -import matplotlib -matplotlib.use('Agg') -import matplotlib.pyplot as plt -import io - -from . import Align as sa - -def correlation_coefficient(sig_tx, sig_rx): - return np.corrcoef(sig_tx, sig_rx)[0, 1] - -def align_samples(sig_tx, sig_rx): - """ - Returns an aligned version of sig_tx and sig_rx by cropping, subsample alignment and - correct phase offset - """ - - # Coarse sample-level alignment - c = np.abs(signal.correlate(sig_rx, sig_tx)) - off_meas = np.argmax(c) - sig_tx.shape[0] + 1 - off = int(abs(off_meas)) - - if off_meas > 0: - sig_tx = sig_tx[:-off] - sig_rx = sig_rx[off:] - elif off_meas < 0: - sig_tx = sig_tx[off:] - sig_rx = sig_rx[:-off] - - if off % 2 == 1: - sig_tx = sig_tx[:-1] - sig_rx = sig_rx[:-1] - - # Fine subsample alignment and phase offset - sig_rx = sa.subsample_align(sig_rx, sig_tx) - sig_rx = sa.phase_align(sig_rx, sig_tx) - return sig_tx, sig_rx, abs(off_meas) - -class Capture: - """Capture samples from ODR-DabMod""" - def __init__(self, samplerate, port, num_samples_to_request, plot_dir): - self.samplerate = samplerate - self.sizeof_sample = 8 # complex floats - self.port = port - self.num_samples_to_request = num_samples_to_request - self.plot_dir = plot_dir - - # Before we run the samples through the model, we want to accumulate - # them into bins depending on their amplitude, and keep only n_per_bin - # samples to avoid that the polynomial gets overfitted in the low-amplitude - # part, which is less interesting than the high-amplitude part, where - # non-linearities become apparent. - self.binning_n_bins = 64 # Number of bins between binning_start and binning_end - self.binning_n_per_bin = 128 # Number of measurements pre bin - - self.rx_normalisation = 1.0 - - self.clear_accumulated() - - def clear_accumulated(self): - self.binning_start = 0.0 - self.binning_end = 1.0 - - # axis 0: bins - # axis 1: 0=tx, 1=rx - self.accumulated_bins = [np.zeros((0, 2), dtype=np.complex64) for i in range(self.binning_n_bins)] - - def _recv_exact(self, sock, num_bytes): - """Receive an exact number of bytes from a socket. This is - a wrapper around sock.recv() that can return less than the number - of requested bytes. - - Args: - sock (socket): Socket to receive data from. - num_bytes (int): Number of bytes that will be returned. - """ - bufs = [] - while num_bytes > 0: - b = sock.recv(num_bytes) - if len(b) == 0: - break - num_bytes -= len(b) - bufs.append(b) - return b''.join(bufs) - - def receive_tcp(self): - s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) - s.settimeout(4) - s.connect(('localhost', self.port)) - - logging.debug("Send version") - s.sendall(b"\x01") - - logging.debug("Send request for {} samples".format(self.num_samples_to_request)) - s.sendall(struct.pack("=I", self.num_samples_to_request)) - - logging.debug("Wait for TX metadata") - num_samps, tx_second, tx_pps = struct.unpack("=III", self._recv_exact(s, 12)) - tx_ts = tx_second + tx_pps / 16384000.0 - - if num_samps > 0: - logging.debug("Receiving {} TX samples".format(num_samps)) - txframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample) - txframe = np.fromstring(txframe_bytes, dtype=np.complex64) - else: - txframe = np.array([], dtype=np.complex64) - - logging.debug("Wait for RX metadata") - rx_second, rx_pps = struct.unpack("=II", self._recv_exact(s, 8)) - rx_ts = rx_second + rx_pps / 16384000.0 - - if num_samps > 0: - logging.debug("Receiving {} RX samples".format(num_samps)) - rxframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample) - rxframe = np.fromstring(rxframe_bytes, dtype=np.complex64) - else: - rxframe = np.array([], dtype=np.complex64) - - if logging.getLogger().getEffectiveLevel() == logging.DEBUG: - logging.debug('txframe: min {}, max {}, median {}'.format( - np.min(np.abs(txframe)), - np.max(np.abs(txframe)), - np.median(np.abs(txframe)))) - - logging.debug('rxframe: min {}, max {}, median {}'.format( - np.min(np.abs(rxframe)), - np.max(np.abs(rxframe)), - np.median(np.abs(rxframe)))) - - logging.debug("Disconnecting") - s.close() - - return txframe, tx_ts, rxframe, rx_ts - - def _plot_spectrum(self, signal, filename, title): - fig = plt.figure() - ax = plt.subplot(1, 1, 1) - - fft = np.fft.fftshift(np.fft.fft(signal)) - fft_db = 20 * np.log10(np.abs(fft)) - - ax.plot(fft_db) - ax.set_title(title) - fig.tight_layout() - fig.savefig(os.path.join(self.plot_dir, filename)) - plt.close(fig) - - def calibrate(self): - txframe, tx_ts, rxframe, rx_ts = self.receive_tcp() - - # Normalize received signal with sent signal - tx_median = np.median(np.abs(txframe)) - rx_median = np.median(np.abs(rxframe)) - self.rx_normalisation = tx_median / rx_median - - rxframe = rxframe * self.rx_normalisation - txframe_aligned, rxframe_aligned, coarse_offset = align_samples(txframe, rxframe) - - self._plot_spectrum(rxframe[:8192], "rxframe.png", "RX Frame") - self._plot_spectrum(txframe[:8192], "txframe.png", "RX Frame") - - return tx_ts, tx_median, rx_ts, rx_median, np.abs(coarse_offset), correlation_coefficient(txframe_aligned, rxframe_aligned) - - def get_samples(self): - """Connect to ODR-DabMod, retrieve TX and RX samples, load - into numpy arrays, and return a tuple - (txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median) - """ - - txframe, tx_ts, rxframe, rx_ts = self.receive_tcp() - - # Normalize received signal with calibrated normalisation - rxframe = rxframe * self.rx_normalisation - txframe_aligned, rxframe_aligned, coarse_offset = align_samples(txframe, rxframe) - self._bin_and_accumulate(txframe_aligned, rxframe_aligned) - return txframe_aligned, tx_ts, tx_median, rxframe_aligned, rx_ts, rx_median - - def bin_histogram(self): - return [b.shape[0] for b in self.accumulated_bins] - - def pointcloud_png(self): - fig = plt.figure() - ax = plt.subplot(1, 1, 1) - for b in self.accumulated_bins: - if b: - ax.scatter( - np.abs(b[0]), - np.abs(b[1]), - s=0.1, - color="black") - ax.set_title("Captured and Binned Samples") - ax.set_xlabel("TX Amplitude") - ax.set_ylabel("RX Amplitude") - ax.set_ylim(0, 0.8) - ax.set_xlim(0, 1.1) - ax.legend(loc=4) - fig.tight_layout() - fig.savefig(os.path.join(self.plot_dir, "pointcloud.png")) - plt.close(fig) - - def _bin_and_accumulate(self, txframe, rxframe): - """Bin the samples and extend the accumulated samples""" - - bin_edges = np.linspace(self.binning_start, self.binning_end, self.binning_n_bins) - - minsize = self.num_samples_to_request - - for i, (tx_start, tx_end) in enumerate(zip(bin_edges, bin_edges[1:])): - txframe_abs = np.abs(txframe) - indices = np.bitwise_and(tx_start < txframe_abs, txframe_abs <= tx_end) - txsamples = np.asmatrix(txframe[indices]) - rxsamples = np.asmatrix(rxframe[indices]) - binned_sample_pairs = np.concatenate((txsamples, rxsamples)).T - - missing_in_bin = self.binning_n_per_bin - self.accumulated_bins[i].shape[0] - num_to_append = min(missing_in_bin, binned_sample_pairs.shape[0]) - print("Handling bin {} {}-{}, {} available, {} missing".format(i, tx_start, tx_end, binned_sample_pairs.shape[0], missing_in_bin)) - if num_to_append: - print("Appending {} to bin {} with shape {}".format(num_to_append, i, self.accumulated_bins[i].shape)) - - self.accumulated_bins[i] = np.concatenate((self.accumulated_bins[i], binned_sample_pairs[:num_to_append,...])) - print("{} now has shape {}".format(i, self.accumulated_bins[i].shape)) - |