summaryrefslogtreecommitdiffstats
path: root/dpd/src
diff options
context:
space:
mode:
Diffstat (limited to 'dpd/src')
-rw-r--r--dpd/src/Const.py16
-rw-r--r--dpd/src/ExtractStatistic.py6
-rw-r--r--dpd/src/Heuristics.py4
-rw-r--r--dpd/src/TX_Agc.py2
-rw-r--r--dpd/src/Test_data.py2
5 files changed, 14 insertions, 16 deletions
diff --git a/dpd/src/Const.py b/dpd/src/Const.py
index bf46796..ebdfeb2 100644
--- a/dpd/src/Const.py
+++ b/dpd/src/Const.py
@@ -6,9 +6,8 @@
import numpy as np
class Const:
- def __init__(self, sample_rate, target_median, n_bins, n_per_bin, n_meas):
+ def __init__(self, sample_rate, target_median, plot):
self.sample_rate = sample_rate
- self.n_meas = n_meas
self.tx_gain_max = 89
@@ -41,11 +40,11 @@ class Const:
self.phase_offset_per_sample = 1. / sample_rate * 2 * np.pi * 1000
# Constants for ExtractStatistic
- self.ES_plot = False
+ self.ES_plot = plot
self.ES_start = 0.0
self.ES_end = 1.0
- self.ES_n_bins = n_bins
- self.ES_n_per_bin = n_per_bin
+ self.ES_n_bins = 64
+ self.ES_n_per_bin = 128
# Constants for TX_Agc
self.TAGC_max_txgain = 89
@@ -53,22 +52,21 @@ class Const:
self.TAGC_tx_median_max = self.TAGC_tx_median_target*1.4
self.TAGC_tx_median_min = self.TAGC_tx_median_target/1.4
-
self.RAGC_min_rxgain = 25
self.RAGC_rx_median_target = self.TAGC_tx_median_target
# Constants for Model
- self.MDL_plot = True
+ self.MDL_plot = True or plot # Override default
# Constants for MER
- self.MER_plot = False
+ self.MER_plot = plot
# Constants for Model_PM
self.MPM_tx_min = 0.1
# Constants for Measure_Shoulder
self.MS_enable = False
- self.MS_plot = False
+ self.MS_plot = plot
assert sample_rate==8192000
meas_offset = 976 # Offset from center frequency to measure shoulder [kHz]
meas_width = 100 # Size of frequency delta to measure shoulder [kHz]
diff --git a/dpd/src/ExtractStatistic.py b/dpd/src/ExtractStatistic.py
index bf9eba5..9df85bc 100644
--- a/dpd/src/ExtractStatistic.py
+++ b/dpd/src/ExtractStatistic.py
@@ -126,7 +126,8 @@ class ExtractStatistic:
def _rx_value_per_bin(self):
rx_values = []
for values in self.rx_values_lists:
- rx_values.append(np.mean(np.abs(values)))
+ mean = np.mean(np.abs(values)) if len(values) > 0 else np.nan
+ rx_values.append(mean)
return rx_values
def _tx_value_per_bin(self):
@@ -147,7 +148,8 @@ class ExtractStatistic:
def _phase_diff_value_per_bin(self, phase_diffs_values_lists):
phase_list = []
for values in phase_diffs_values_lists:
- phase_list.append(np.mean(values))
+ mean = np.mean(values) if len(values) > 0 else np.nan
+ phase_list.append(mean)
return phase_list
def extract(self, tx_dpd, rx):
diff --git a/dpd/src/Heuristics.py b/dpd/src/Heuristics.py
index 467c5da..a32ccff 100644
--- a/dpd/src/Heuristics.py
+++ b/dpd/src/Heuristics.py
@@ -10,7 +10,7 @@ import numpy as np
def get_learning_rate(idx_run):
idx_max = 10.0
lr_min = 0.05
- lr_max = 1
+ lr_max = 0.4
lr_delta = lr_max - lr_min
idx_run = min(idx_run, idx_max)
learning_rate = lr_max - lr_delta * idx_run/idx_max
@@ -24,5 +24,3 @@ def get_n_meas(idx_run):
idx_run = min(idx_run, idx_max)
learning_rate = n_meas_delta * idx_run/idx_max + n_meas_min
return int(np.round(learning_rate))
-
-
diff --git a/dpd/src/TX_Agc.py b/dpd/src/TX_Agc.py
index 7b74c8f..2602ea6 100644
--- a/dpd/src/TX_Agc.py
+++ b/dpd/src/TX_Agc.py
@@ -90,7 +90,7 @@ class TX_Agc:
# Set new values.
# Avoid temorary increase of output power with correct order
- if digital_gain_factor < 0:
+ if digital_gain_factor < 1:
self.adapt.set_digital_gain(digital_gain)
time.sleep(0.5)
txgain = self._set_tx_gain(new_txgain)
diff --git a/dpd/src/Test_data.py b/dpd/src/Test_data.py
index 67f4dff..bbef282 100644
--- a/dpd/src/Test_data.py
+++ b/dpd/src/Test_data.py
@@ -40,7 +40,7 @@ class Test_data:
plt.plot(np.angle(np.fft.fftshift(np.fft.fft(tx_orig))), 'p')
"""
- self.c = src.Const.Const(sample_rate)
+ self.c = src.Const.Const(sample_rate,, False
self.du = src.Dab_Util.Dab_Util(sample_rate)
self.file_paths = {