aboutsummaryrefslogtreecommitdiffstats
path: root/dpd/src
diff options
context:
space:
mode:
Diffstat (limited to 'dpd/src')
-rw-r--r--dpd/src/Adapt.py286
-rw-r--r--dpd/src/Dab_Util.py246
-rw-r--r--dpd/src/ExtractStatistic.py196
-rw-r--r--dpd/src/GlobalConfig.py108
-rw-r--r--dpd/src/Heuristics.py56
-rw-r--r--dpd/src/MER.py132
-rw-r--r--dpd/src/Measure.py136
-rw-r--r--dpd/src/Measure_Shoulders.py158
-rw-r--r--dpd/src/Model.py32
-rw-r--r--dpd/src/Model_AM.py122
-rw-r--r--dpd/src/Model_Lut.py60
-rw-r--r--dpd/src/Model_PM.py124
-rw-r--r--dpd/src/Model_Poly.py101
-rw-r--r--dpd/src/RX_Agc.py166
-rw-r--r--dpd/src/Symbol_align.py193
-rw-r--r--dpd/src/TX_Agc.py131
-rw-r--r--dpd/src/__init__.py0
-rw-r--r--dpd/src/phase_align.py98
-rwxr-xr-xdpd/src/subsample_align.py111
19 files changed, 0 insertions, 2456 deletions
diff --git a/dpd/src/Adapt.py b/dpd/src/Adapt.py
deleted file mode 100644
index a57602f..0000000
--- a/dpd/src/Adapt.py
+++ /dev/null
@@ -1,286 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine: updates ODR-DabMod's settings
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-"""
-This module is used to change settings of ODR-DabMod using
-the ZMQ remote control socket.
-"""
-
-import zmq
-import logging
-import numpy as np
-import os
-import datetime
-import pickle
-
-LUT_LEN = 32
-FORMAT_POLY = 1
-FORMAT_LUT = 2
-
-
-def _write_poly_coef_file(coefs_am, coefs_pm, path):
- assert (len(coefs_am) == len(coefs_pm))
-
- f = open(path, 'w')
- f.write("{}\n{}\n".format(FORMAT_POLY, len(coefs_am)))
- for coef in coefs_am:
- f.write("{}\n".format(coef))
- for coef in coefs_pm:
- f.write("{}\n".format(coef))
- f.close()
-
-
-def _write_lut_file(scalefactor, lut, path):
- assert (len(lut) == LUT_LEN)
-
- f = open(path, 'w')
- f.write("{}\n{}\n".format(FORMAT_LUT, scalefactor))
- for coef in lut:
- f.write("{}\n{}\n".format(coef.real, coef.imag))
- f.close()
-
-def dpddata_to_str(dpddata):
- if dpddata[0] == "poly":
- coefs_am = dpddata[1]
- coefs_pm = dpddata[2]
- return "dpd_coefs_am {}, dpd_coefs_pm {}".format(
- coefs_am, coefs_pm)
- elif dpddata[0] == "lut":
- scalefactor = dpddata[1]
- lut = dpddata[2]
- return "LUT scalefactor {}, LUT {}".format(
- scalefactor, lut)
- else:
- raise ValueError("Unknown dpddata type {}".format(dpddata[0]))
-
-class Adapt:
- """Uses the ZMQ remote control to change parameters of the DabMod
-
- Parameters
- ----------
- port : int
- Port at which the ODR-DabMod is listening to connect the
- ZMQ remote control.
- """
-
- def __init__(self, config, port, coef_path):
- logging.debug("Instantiate Adapt object")
- self.c = config
- self.port = port
- self.coef_path = coef_path
- self.host = "localhost"
- self._context = zmq.Context()
-
- def _connect(self):
- """Establish the connection to ODR-DabMod using
- a ZMQ socket that is in request mode (Client).
- Returns a socket"""
- sock = self._context.socket(zmq.REQ)
- poller = zmq.Poller()
- poller.register(sock, zmq.POLLIN)
-
- sock.connect("tcp://%s:%d" % (self.host, self.port))
-
- sock.send(b"ping")
-
- socks = dict(poller.poll(1000))
- if socks:
- if socks.get(sock) == zmq.POLLIN:
- data = [el.decode() for el in sock.recv_multipart()]
-
- if data != ['ok']:
- raise RuntimeError(
- "Invalid ZMQ RC answer to 'ping' at %s %d: %s" %
- (self.host, self.port, data))
- else:
- sock.close(linger=10)
- raise RuntimeError(
- "ZMQ RC does not respond to 'ping' at %s %d" %
- (self.host, self.port))
-
- return sock
-
- def send_receive(self, message):
- """Send a message to ODR-DabMod. It always
- returns the answer ODR-DabMod sends back.
-
- An example message could be
- "get sdr txgain" or "set sdr txgain 50"
-
- Parameter
- ---------
- message : str
- The message string that will be sent to the receiver.
- """
- sock = self._connect()
- logging.debug("Send message: %s" % message)
- msg_parts = message.split(" ")
- for i, part in enumerate(msg_parts):
- if i == len(msg_parts) - 1:
- f = 0
- else:
- f = zmq.SNDMORE
-
- sock.send(part.encode(), flags=f)
-
- data = [el.decode() for el in sock.recv_multipart()]
- logging.debug("Received message: %s" % message)
- return data
-
- def set_txgain(self, gain):
- """Set a new txgain for the ODR-DabMod.
-
- Parameters
- ----------
- gain : int
- new TX gain, in the same format as ODR-DabMod's config file
- """
- # TODO this is specific to the B200
- if gain < 0 or gain > 89:
- raise ValueError("Gain has to be in [0,89]")
- return self.send_receive("set sdr txgain %.4f" % float(gain))
-
- def get_txgain(self):
- """Get the txgain value in dB for the ODR-DabMod."""
- # TODO handle failure
- return float(self.send_receive("get sdr txgain")[0])
-
- def set_rxgain(self, gain):
- """Set a new rxgain for the ODR-DabMod.
-
- Parameters
- ----------
- gain : int
- new RX gain, in the same format as ODR-DabMod's config file
- """
- # TODO this is specific to the B200
- if gain < 0 or gain > 89:
- raise ValueError("Gain has to be in [0,89]")
- return self.send_receive("set sdr rxgain %.4f" % float(gain))
-
- def get_rxgain(self):
- """Get the rxgain value in dB for the ODR-DabMod."""
- # TODO handle failure
- return float(self.send_receive("get sdr rxgain")[0])
-
- def set_digital_gain(self, gain):
- """Set a new rxgain for the ODR-DabMod.
-
- Parameters
- ----------
- gain : int
- new RX gain, in the same format as ODR-DabMod's config file
- """
- msg = "set gain digital %.5f" % gain
- return self.send_receive(msg)
-
- def get_digital_gain(self):
- """Get the rxgain value in dB for the ODR-DabMod."""
- # TODO handle failure
- return float(self.send_receive("get gain digital")[0])
-
- def get_predistorter(self):
- """Load the coefficients from the file in the format given in the README,
- return ("poly", [AM coef], [PM coef]) or ("lut", scalefactor, [LUT entries])
- """
- f = open(self.coef_path, 'r')
- lines = f.readlines()
- predistorter_format = int(lines[0])
- if predistorter_format == FORMAT_POLY:
- coefs_am_out = []
- coefs_pm_out = []
- n_coefs = int(lines[1])
- coefs = [float(l) for l in lines[2:]]
- i = 0
- for c in coefs:
- if i < n_coefs:
- coefs_am_out.append(c)
- elif i < 2 * n_coefs:
- coefs_pm_out.append(c)
- else:
- raise ValueError(
- 'Incorrect coef file format: too many'
- ' coefficients in {}, should be {}, coefs are {}'
- .format(self.coef_path, n_coefs, coefs))
- i += 1
- f.close()
- return 'poly', coefs_am_out, coefs_pm_out
- elif predistorter_format == FORMAT_LUT:
- scalefactor = int(lines[1])
- coefs = np.array([float(l) for l in lines[2:]], dtype=np.float32)
- coefs = coefs.reshape((-1, 2))
- lut = coefs[..., 0] + 1j * coefs[..., 1]
- if len(lut) != LUT_LEN:
- raise ValueError("Incorrect number of LUT entries ({} expected {})".format(len(lut), LUT_LEN))
- return 'lut', scalefactor, lut
- else:
- raise ValueError("Unknown predistorter format {}".format(predistorter_format))
-
- def set_predistorter(self, dpddata):
- """Update the predistorter data in the modulator. Takes the same
- tuple format as argument than the one returned get_predistorter()"""
- if dpddata[0] == "poly":
- coefs_am = dpddata[1]
- coefs_pm = dpddata[2]
- _write_poly_coef_file(coefs_am, coefs_pm, self.coef_path)
- elif dpddata[0] == "lut":
- scalefactor = dpddata[1]
- lut = dpddata[2]
- _write_lut_file(scalefactor, lut, self.coef_path)
- else:
- raise ValueError("Unknown predistorter '{}'".format(dpddata[0]))
- self.send_receive("set memlesspoly coeffile {}".format(self.coef_path))
-
- def dump(self, path=None):
- """Backup current settings to a file"""
- dt = datetime.datetime.now().isoformat()
- if path is None:
- if self.c.plot_location is not None:
- path = self.c.plot_location + "/" + dt + "_adapt.pkl"
- else:
- raise Exception("Cannot dump Adapt without either plot_location or path set")
- d = {
- "txgain": self.get_txgain(),
- "rxgain": self.get_rxgain(),
- "digital_gain": self.get_digital_gain(),
- "predistorter": self.get_predistorter()
- }
- with open(path, "wb") as f:
- pickle.dump(d, f)
-
- return path
-
- def load(self, path):
- """Restore settings from a file"""
- with open(path, "rb") as f:
- d = pickle.load(f)
-
- self.set_txgain(d["txgain"])
- self.set_digital_gain(d["digital_gain"])
- self.set_rxgain(d["rxgain"])
- self.set_predistorter(d["predistorter"])
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger, Matthias P. Braendli
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Dab_Util.py b/dpd/src/Dab_Util.py
deleted file mode 100644
index bc89a39..0000000
--- a/dpd/src/Dab_Util.py
+++ /dev/null
@@ -1,246 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, utilities for working with DAB signals.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib
-
-matplotlib.use('agg')
-import matplotlib.pyplot as plt
-import src.subsample_align as sa
-import src.phase_align as pa
-from scipy import signal
-
-
-def fromfile(filename, offset=0, length=None):
- if length is None:
- return np.memmap(filename, dtype=np.complex64, mode='r', offset=64 / 8 * offset)
- else:
- return np.memmap(filename, dtype=np.complex64, mode='r', offset=64 / 8 * offset, shape=length)
-
-
-class Dab_Util:
- """Collection of methods that can be applied to an array
- complex IQ samples of a DAB signal
- """
-
- def __init__(self, config, sample_rate, plot=False):
- """
- :param sample_rate: sample rate [sample/sec] to use for calculations
- """
- self.c = config
- self.sample_rate = sample_rate
- self.dab_bandwidth = 1536000 # Bandwidth of a dab signal
- self.frame_ms = 96 # Duration of a Dab frame
-
- self.plot = plot
-
- def lag(self, sig_orig, sig_rec):
- """
- Find lag between two signals
- Args:
- sig_orig: The signal that has been sent
- sig_rec: The signal that has been recored
- """
- off = sig_rec.shape[0]
- c = np.abs(signal.correlate(sig_orig, sig_rec))
-
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- corr_path = self.c.plot_location + "/" + dt + "_tx_rx_corr.png"
- plt.plot(c, label="corr")
- plt.legend()
- plt.savefig(corr_path)
- plt.close()
-
- return np.argmax(c) - off + 1
-
- def lag_upsampling(self, sig_orig, sig_rec, n_up):
- if n_up != 1:
- sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up)
- sig_rec_up = signal.resample(sig_rec, sig_rec.shape[0] * n_up)
- else:
- sig_orig_up = sig_orig
- sig_rec_up = sig_rec
- l = self.lag(sig_orig_up, sig_rec_up)
- l_orig = float(l) / n_up
- return l_orig
-
- def subsample_align_upsampling(self, sig_tx, sig_rx, n_up=32):
- """
- Returns an aligned version of sig_tx and sig_rx by cropping and subsample alignment
- Using upsampling
- """
- assert (sig_tx.shape[0] == sig_rx.shape[0])
-
- if sig_tx.shape[0] % 2 == 1:
- sig_tx = sig_tx[:-1]
- sig_rx = sig_rx[:-1]
-
- sig1_up = signal.resample(sig_tx, sig_tx.shape[0] * n_up)
- sig2_up = signal.resample(sig_rx, sig_rx.shape[0] * n_up)
-
- off_meas = self.lag_upsampling(sig2_up, sig1_up, n_up=1)
- off = int(abs(off_meas))
-
- if off_meas > 0:
- sig1_up = sig1_up[:-off]
- sig2_up = sig2_up[off:]
- elif off_meas < 0:
- sig1_up = sig1_up[off:]
- sig2_up = sig2_up[:-off]
-
- sig_tx = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64)
- sig_rx = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64)
- return sig_tx, sig_rx
-
- def subsample_align(self, sig_tx, sig_rx):
- """
- Returns an aligned version of sig_tx and sig_rx by cropping and subsample alignment
- """
-
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_sync_raw.png"
-
- fig, axs = plt.subplots(2)
- axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
- axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
- axs[0].set_title("Raw Data")
- axs[0].set_ylabel("Amplitude")
- axs[0].set_xlabel("Samples")
- axs[0].legend(loc=4)
-
- axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
- axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
- axs[1].set_title("Raw Data")
- axs[1].set_ylabel("Real Part")
- axs[1].set_xlabel("Samples")
- axs[1].legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- off_meas = self.lag_upsampling(sig_rx, sig_tx, n_up=1)
- off = int(abs(off_meas))
-
- logging.debug("sig_tx_orig: {} {}, sig_rx_orig: {} {}, offset {}".format(
- len(sig_tx),
- sig_tx.dtype,
- len(sig_rx),
- sig_rx.dtype,
- off_meas))
-
- if off_meas > 0:
- sig_tx = sig_tx[:-off]
- sig_rx = sig_rx[off:]
- elif off_meas < 0:
- sig_tx = sig_tx[off:]
- sig_rx = sig_rx[:-off]
-
- if off % 2 == 1:
- sig_tx = sig_tx[:-1]
- sig_rx = sig_rx[:-1]
-
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_sync_sample_aligned.png"
-
- fig, axs = plt.subplots(2)
- axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
- axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
- axs[0].set_title("Sample Aligned Data")
- axs[0].set_ylabel("Amplitude")
- axs[0].set_xlabel("Samples")
- axs[0].legend(loc=4)
-
- axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
- axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
- axs[1].set_ylabel("Real Part")
- axs[1].set_xlabel("Samples")
- axs[1].legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- sig_rx = sa.subsample_align(sig_rx, sig_tx)
-
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_sync_subsample_aligned.png"
-
- fig, axs = plt.subplots(2)
- axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
- axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
- axs[0].set_title("Subsample Aligned")
- axs[0].set_ylabel("Amplitude")
- axs[0].set_xlabel("Samples")
- axs[0].legend(loc=4)
-
- axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
- axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
- axs[1].set_ylabel("Real Part")
- axs[1].set_xlabel("Samples")
- axs[1].legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- sig_rx = pa.phase_align(sig_rx, sig_tx)
-
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_sync_phase_aligned.png"
-
- fig, axs = plt.subplots(2)
- axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame")
- axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame")
- axs[0].set_title("Phase Aligned")
- axs[0].set_ylabel("Amplitude")
- axs[0].set_xlabel("Samples")
- axs[0].legend(loc=4)
-
- axs[1].plot(np.real(sig_tx[:128]), label="TX Frame")
- axs[1].plot(np.real(sig_rx[:128]), label="RX Frame")
- axs[1].set_ylabel("Real Part")
- axs[1].set_xlabel("Samples")
- axs[1].legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- logging.debug(
- "Sig1_cut: %d %s, Sig2_cut: %d %s, off: %d" % (len(sig_tx), sig_tx.dtype, len(sig_rx), sig_rx.dtype, off))
- return sig_tx, sig_rx
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/ExtractStatistic.py b/dpd/src/ExtractStatistic.py
deleted file mode 100644
index 639513a..0000000
--- a/dpd/src/ExtractStatistic.py
+++ /dev/null
@@ -1,196 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine,
-# Extract statistic from received TX and RX data to use in Model
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import numpy as np
-import matplotlib.pyplot as plt
-import datetime
-import os
-import logging
-
-
-def _check_input_extract(tx_dpd, rx_received):
- # Check data type
- assert tx_dpd[0].dtype == np.complex64, \
- "tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype)
- assert rx_received[0].dtype == np.complex64, \
- "rx_received is not complex64 but {}".format(rx_received[0].dtype)
- # Check if signals have same normalization
- normalization_error = np.abs(np.median(np.abs(tx_dpd)) -
- np.median(np.abs(rx_received))) / (
- np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
- assert normalization_error < 0.01, "Non normalized signals"
-
-
-def _phase_diff_value_per_bin(phase_diffs_values_lists):
- phase_list = []
- for values in phase_diffs_values_lists:
- mean = np.mean(values) if len(values) > 0 else np.nan
- phase_list.append(mean)
- return phase_list
-
-
-class ExtractStatistic:
- """Calculate a low variance RX value for equally spaced tx values
- of a predefined range"""
-
- def __init__(self, c):
- self.c = c
-
- # Number of measurements used to extract the statistic
- self.n_meas = 0
-
- # Boundaries for the bins
- self.tx_boundaries = np.linspace(c.ES_start, c.ES_end, c.ES_n_bins + 1)
- self.n_per_bin = c.ES_n_per_bin
-
- # List of rx values for each bin
- self.rx_values_lists = []
- for i in range(c.ES_n_bins):
- self.rx_values_lists.append([])
-
- # List of tx values for each bin
- self.tx_values_lists = []
- for i in range(c.ES_n_bins):
- self.tx_values_lists.append([])
-
- self.plot = c.ES_plot
-
- def _plot_and_log(self, tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists):
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_ExtractStatistic.png"
- sub_rows = 3
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_values, rx_values,
- label="Estimated Values",
- color="red")
- for i, tx_value in enumerate(tx_values):
- rx_values_list = self.rx_values_lists[i]
- ax.scatter(np.ones(len(rx_values_list)) * tx_value,
- np.abs(rx_values_list),
- s=0.1,
- color="black")
- ax.set_title("Extracted Statistic")
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("RX Amplitude")
- ax.set_ylim(0, 0.8)
- ax.set_xlim(0, 1.1)
- ax.legend(loc=4)
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_values, np.rad2deg(phase_diffs_values),
- label="Estimated Values",
- color="red")
- for i, tx_value in enumerate(tx_values):
- phase_diff = phase_diffs_values_lists[i]
- ax.scatter(np.ones(len(phase_diff)) * tx_value,
- np.rad2deg(phase_diff),
- s=0.1,
- color="black")
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("Phase Difference")
- ax.set_ylim(-60, 60)
- ax.set_xlim(0, 1.1)
- ax.legend(loc=4)
-
- num = []
- for i, tx_value in enumerate(tx_values):
- rx_values_list = self.rx_values_lists[i]
- num.append(len(rx_values_list))
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(num)
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("Number of Samples")
- ax.set_ylim(0, self.n_per_bin * 1.2)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- def _rx_value_per_bin(self):
- rx_values = []
- for values in self.rx_values_lists:
- mean = np.mean(np.abs(values)) if len(values) > 0 else np.nan
- rx_values.append(mean)
- return rx_values
-
- def _tx_value_per_bin(self):
- tx_values = []
- for start, end in zip(self.tx_boundaries, self.tx_boundaries[1:]):
- tx_values.append(np.mean((start, end)))
- return tx_values
-
- def _phase_diff_list_per_bin(self):
- phase_values_lists = []
- for tx_list, rx_list in zip(self.tx_values_lists, self.rx_values_lists):
- phase_diffs = []
- for tx, rx in zip(tx_list, rx_list):
- phase_diffs.append(np.angle(rx * tx.conjugate()))
- phase_values_lists.append(phase_diffs)
- return phase_values_lists
-
- def extract(self, tx_dpd, rx):
- """Extract information from a new measurement and store them
- in member variables."""
- _check_input_extract(tx_dpd, rx)
- self.n_meas += 1
-
- tx_abs = np.abs(tx_dpd)
- for i, (tx_start, tx_end) in enumerate(zip(self.tx_boundaries, self.tx_boundaries[1:])):
- mask = (tx_abs > tx_start) & (tx_abs < tx_end)
- n_add = max(0, self.n_per_bin - len(self.rx_values_lists[i]))
- self.rx_values_lists[i] += \
- list(rx[mask][:n_add])
- self.tx_values_lists[i] += \
- list(tx_dpd[mask][:n_add])
-
- rx_values = self._rx_value_per_bin()
- tx_values = self._tx_value_per_bin()
-
- n_per_bin = np.array([len(values) for values in self.rx_values_lists])
- # Index of first not filled bin, assumes that never all bins are filled
- idx_end = np.argmin(n_per_bin == self.c.ES_n_per_bin)
-
- phase_diffs_values_lists = self._phase_diff_list_per_bin()
- phase_diffs_values = _phase_diff_value_per_bin(phase_diffs_values_lists)
-
- self._plot_and_log(tx_values, rx_values, phase_diffs_values, phase_diffs_values_lists)
-
- tx_values_crop = np.array(tx_values, dtype=np.float32)[:idx_end]
- rx_values_crop = np.array(rx_values, dtype=np.float32)[:idx_end]
- phase_diffs_values_crop = np.array(phase_diffs_values, dtype=np.float32)[:idx_end]
- return tx_values_crop, rx_values_crop, phase_diffs_values_crop, n_per_bin
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/GlobalConfig.py b/dpd/src/GlobalConfig.py
deleted file mode 100644
index 56839fc..0000000
--- a/dpd/src/GlobalConfig.py
+++ /dev/null
@@ -1,108 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, constants and global configuration
-#
-# Source for DAB standard: etsi_EN_300_401_v010401p p145
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import numpy as np
-
-class GlobalConfig:
- def __init__(self, cli_args, plot_location):
- self.sample_rate = cli_args.samplerate
- assert self.sample_rate == 8192000 # By now only constants for 8192000
-
- self.plot_location = plot_location
-
- # DAB frame
- # Time domain
- oversample = int(self.sample_rate / 2048000)
- self.T_F = oversample * 196608 # Transmission frame duration
- self.T_NULL = oversample * 2656 # Null symbol duration
- self.T_S = oversample * 2552 # Duration of OFDM symbols of indices l = 1, 2, 3,... L;
- self.T_U = oversample * 2048 # Inverse of carrier spacing
- self.T_C = oversample * 504 # Duration of cyclic prefix
-
- # Frequency Domain
- # example: np.delete(fft[3328:4865], 768)
- self.FFT_delta = 1536 # Number of carrier frequencies
- self.FFT_delete = 768
- self.FFT_start = 3328
- self.FFT_end = 4865
-
- # Calculate sample offset from phase rotation
- # time per sample = 1 / sample_rate
- # frequency per bin = 1kHz
- # phase difference per sample offset = delta_t * 2 * pi * delta_freq
- self.phase_offset_per_sample = 1. / self.sample_rate * 2 * np.pi * 1000
-
- # Constants for ExtractStatistic
- self.ES_plot = cli_args.plot
- self.ES_start = 0.0
- self.ES_end = 1.0
- self.ES_n_bins = 64 # Number of bins between ES_start and ES_end
- self.ES_n_per_bin = 128 # Number of measurements pre bin
-
- # Constants for Measure_Shoulder
- self.MS_enable = False
- self.MS_plot = cli_args.plot
-
- meas_offset = 976 # Offset from center frequency to measure shoulder [kHz]
- meas_width = 100 # Size of frequency delta to measure shoulder [kHz]
- shoulder_offset_edge = np.abs(meas_offset - self.FFT_delta)
- self.MS_shoulder_left_start = self.FFT_start - shoulder_offset_edge - meas_width / 2
- self.MS_shoulder_left_end = self.FFT_start - shoulder_offset_edge + meas_width / 2
- self.MS_shoulder_right_start = self.FFT_end + shoulder_offset_edge - meas_width / 2
- self.MS_shoulder_right_end = self.FFT_end + shoulder_offset_edge + meas_width / 2
- self.MS_peak_start = self.FFT_start + 100 # Ignore region near edges
- self.MS_peak_end = self.FFT_end - 100
-
- self.MS_FFT_size = 8192
- self.MS_averaging_size = 4 * self.MS_FFT_size
- self.MS_n_averaging = 40
- self.MS_n_proc = 4
-
- # Constants for MER
- self.MER_plot = cli_args.plot
-
- # Constants for Model
- self.MDL_plot = cli_args.plot
-
- # Constants for Model_PM
- # Set all phase offsets to zero for TX amplitude < MPM_tx_min
- self.MPM_tx_min = 0.1
-
- # Constants for TX_Agc
- self.TAGC_max_txgain = 89 # USRP B200 specific
- self.TAGC_tx_median_target = cli_args.target_median
- self.TAGC_tx_median_max = self.TAGC_tx_median_target * 1.4
- self.TAGC_tx_median_min = self.TAGC_tx_median_target / 1.4
-
- # Constants for RX_AGC
- self.RAGC_min_rxgain = 25 # USRP B200 specific
- self.RAGC_rx_median_target = cli_args.target_median
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-# Copyright (c) 2017 Matthias P. Braendli
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Heuristics.py b/dpd/src/Heuristics.py
deleted file mode 100644
index 21d400b..0000000
--- a/dpd/src/Heuristics.py
+++ /dev/null
@@ -1,56 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, heuristics we use to tune the parameters.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import numpy as np
-
-
-def get_learning_rate(idx_run):
- """Gradually reduce learning rate from lr_max to lr_min within
- idx_max steps, then keep the learning rate at lr_min"""
- idx_max = 10.0
- lr_min = 0.05
- lr_max = 0.4
- lr_delta = lr_max - lr_min
- idx_run = min(idx_run, idx_max)
- learning_rate = lr_max - lr_delta * idx_run / idx_max
- return learning_rate
-
-
-def get_n_meas(idx_run):
- """Gradually increase number of measurements used to extract
- a statistic from n_meas_min to n_meas_max within idx_max steps,
- then keep number of measurements at n_meas_max"""
- idx_max = 10.0
- n_meas_min = 10
- n_meas_max = 20
- n_meas_delta = n_meas_max - n_meas_min
- idx_run = min(idx_run, idx_max)
- learning_rate = n_meas_delta * idx_run / idx_max + n_meas_min
- return int(np.round(learning_rate))
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-# Copyright (c) 2017 Matthias P. Braendli
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/MER.py b/dpd/src/MER.py
deleted file mode 100644
index 693058d..0000000
--- a/dpd/src/MER.py
+++ /dev/null
@@ -1,132 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, Modulation Error Rate.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib
-matplotlib.use('agg')
-import matplotlib.pyplot as plt
-
-class MER:
- def __init__(self, c):
- self.c = c
-
- self.plot = c.MER_plot
-
- def _calc_spectrum(self, tx):
- fft = np.fft.fftshift(np.fft.fft(tx))
- return np.delete(fft[self.c.FFT_start:self.c.FFT_end],
- self.c.FFT_delete)
-
- def _split_in_carrier(self, x, y):
- if 0.5 < np.mean((np.abs(np.abs(x) - np.abs(y)) /
- np.abs(np.abs(x) + np.abs(y)))):
- # Constellation points are axis aligned on the Im/Re plane
- x1 = x[(y < x) & (y > -x)]
- y1 = y[(y < x) & (y > -x)]
-
- x2 = x[(y > x) & (y > -x)]
- y2 = y[(y > x) & (y > -x)]
-
- x3 = x[(y > x) & (y < -x)]
- y3 = y[(y > x) & (y < -x)]
-
- x4 = x[(y < x) & (y < -x)]
- y4 = y[(y < x) & (y < -x)]
- else:
- # Constellation points are on the diagonal or Im/Re plane
- x1 = x[(+x > 0) & (+y > 0)]
- y1 = y[(+x > 0) & (+y > 0)]
-
- x2 = x[(-x > 0) & (+y > 0)]
- y2 = y[(-x > 0) & (+y > 0)]
-
- x3 = x[(-x > 0) & (-y > 0)]
- y3 = y[(-x > 0) & (-y > 0)]
-
- x4 = x[(+x > 0) & (-y > 0)]
- y4 = y[(+x > 0) & (-y > 0)]
- return (x1, y1), (x2, y2), (x3, y3), (x4, y4)
-
- def _calc_mer_for_isolated_constellation_point(self, x, y):
- """Calculate MER for one constellation point"""
- x_mean = np.mean(x)
- y_mean = np.mean(y)
-
- U_RMS = np.sqrt(x_mean ** 2 + y_mean ** 2)
- U_ERR = np.mean(np.sqrt((x - x_mean) ** 2 + (y - y_mean) ** 2))
- MER = 20 * np.log10(U_ERR / U_RMS)
-
- return x_mean, y_mean, U_RMS, U_ERR, MER
-
- def calc_mer(self, tx, debug_name=""):
- """Calculate MER for input signal from a symbol aligned signal."""
- assert tx.shape[0] == self.c.T_U, "Wrong input length"
-
- spectrum = self._calc_spectrum(tx)
-
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_MER" + debug_name + ".png"
- else:
- fig_path = None
-
- MERs = []
- for i, (x, y) in enumerate(self._split_in_carrier(
- np.real(spectrum),
- np.imag(spectrum))):
- x_mean, y_mean, U_RMS, U_ERR, MER =\
- self._calc_mer_for_isolated_constellation_point(x, y)
- MERs.append(MER)
-
- tau = np.linspace(0, 2 * np.pi, num=100)
- x_err = U_ERR * np.sin(tau) + x_mean
- y_err = U_ERR * np.cos(tau) + y_mean
-
- if self.plot:
- ax = plt.subplot(221 + i)
- ax.scatter(x, y, s=0.2, color='black')
- ax.plot(x_mean, y_mean, 'p', color='red')
- ax.plot(x_err, y_err, linewidth=2, color='blue')
- ax.text(0.1, 0.1, "MER {:.1f}dB".format(MER), transform=ax.transAxes)
- ax.set_xlabel("Real")
- ax.set_ylabel("Imag")
- ylim = ax.get_ylim()
- ax.set_ylim(ylim[0] - (ylim[1] - ylim[0]) * 0.1, ylim[1])
-
- if fig_path is not None:
- plt.tight_layout()
- plt.savefig(fig_path)
- plt.show()
- plt.close()
-
- MER_res = 20 * np.log10(np.mean([10 ** (MER / 20) for MER in MERs]))
- return MER_res
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Measure.py b/dpd/src/Measure.py
deleted file mode 100644
index 6d8007d..0000000
--- a/dpd/src/Measure.py
+++ /dev/null
@@ -1,136 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, Measure signal using ODR-DabMod's
-# DPD Server.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import socket
-import struct
-import numpy as np
-import src.Dab_Util as DU
-import os
-import logging
-
-class Measure:
- """Collect Measurement from DabMod"""
- def __init__(self, config, samplerate, port, num_samples_to_request):
- logging.info("Instantiate Measure object")
- self.c = config
- self.samplerate = samplerate
- self.sizeof_sample = 8 # complex floats
- self.port = port
- self.num_samples_to_request = num_samples_to_request
-
- def _recv_exact(self, sock, num_bytes):
- """Receive an exact number of bytes from a socket. This is
- a wrapper around sock.recv() that can return less than the number
- of requested bytes.
-
- Args:
- sock (socket): Socket to receive data from.
- num_bytes (int): Number of bytes that will be returned.
- """
- bufs = []
- while num_bytes > 0:
- b = sock.recv(num_bytes)
- if len(b) == 0:
- break
- num_bytes -= len(b)
- bufs.append(b)
- return b''.join(bufs)
-
- def receive_tcp(self):
- s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
- s.settimeout(4)
- s.connect(('localhost', self.port))
-
- logging.debug("Send version")
- s.sendall(b"\x01")
-
- logging.debug("Send request for {} samples".format(self.num_samples_to_request))
- s.sendall(struct.pack("=I", self.num_samples_to_request))
-
- logging.debug("Wait for TX metadata")
- num_samps, tx_second, tx_pps = struct.unpack("=III", self._recv_exact(s, 12))
- tx_ts = tx_second + tx_pps / 16384000.0
-
- if num_samps > 0:
- logging.debug("Receiving {} TX samples".format(num_samps))
- txframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample)
- txframe = np.fromstring(txframe_bytes, dtype=np.complex64)
- else:
- txframe = np.array([], dtype=np.complex64)
-
- logging.debug("Wait for RX metadata")
- rx_second, rx_pps = struct.unpack("=II", self._recv_exact(s, 8))
- rx_ts = rx_second + rx_pps / 16384000.0
-
- if num_samps > 0:
- logging.debug("Receiving {} RX samples".format(num_samps))
- rxframe_bytes = self._recv_exact(s, num_samps * self.sizeof_sample)
- rxframe = np.fromstring(rxframe_bytes, dtype=np.complex64)
- else:
- rxframe = np.array([], dtype=np.complex64)
-
- if logging.getLogger().getEffectiveLevel() == logging.DEBUG:
- logging.debug('txframe: min {}, max {}, median {}'.format(
- np.min(np.abs(txframe)),
- np.max(np.abs(txframe)),
- np.median(np.abs(txframe))))
-
- logging.debug('rxframe: min {}, max {}, median {}'.format(
- np.min(np.abs(rxframe)),
- np.max(np.abs(rxframe)),
- np.median(np.abs(rxframe))))
-
- logging.debug("Disconnecting")
- s.close()
-
- return txframe, tx_ts, rxframe, rx_ts
-
-
- def get_samples(self):
- """Connect to ODR-DabMod, retrieve TX and RX samples, load
- into numpy arrays, and return a tuple
- (txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median)
- """
-
- txframe, tx_ts, rxframe, rx_ts = self.receive_tcp()
-
- # Normalize received signal with sent signal
- rx_median = np.median(np.abs(rxframe))
- rxframe = rxframe / rx_median * np.median(np.abs(txframe))
-
- du = DU.Dab_Util(self.c, self.samplerate)
- txframe_aligned, rxframe_aligned = du.subsample_align(txframe, rxframe)
-
- logging.info(
- "Measurement done, tx %d %s, rx %d %s, tx aligned %d %s, rx aligned %d %s"
- % (len(txframe), txframe.dtype, len(rxframe), rxframe.dtype,
- len(txframe_aligned), txframe_aligned.dtype, len(rxframe_aligned), rxframe_aligned.dtype) )
-
- return txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Measure_Shoulders.py b/dpd/src/Measure_Shoulders.py
deleted file mode 100644
index fd90050..0000000
--- a/dpd/src/Measure_Shoulders.py
+++ /dev/null
@@ -1,158 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, calculate peak to shoulder difference.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import multiprocessing
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-def plt_next_axis(sub_rows, sub_cols, i_sub):
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- return i_sub, ax
-
-
-def plt_annotate(ax, x, y, title=None, legend_loc=None):
- ax.set_xlabel(x)
- ax.set_ylabel(y)
- if title is not None:
- ax.set_title(title)
- if legend_loc is not None:
- ax.legend(loc=legend_loc)
-
-
-def calc_fft_db(signal, offset, c):
- fft = np.fft.fftshift(np.fft.fft(signal[offset:offset + c.MS_FFT_size]))
- fft_db = 20 * np.log10(np.abs(fft))
- return fft_db
-
-
-def _calc_peak(fft, c):
- assert fft.shape == (c.MS_FFT_size,), fft.shape
- idxs = (c.MS_peak_start, c.MS_peak_end)
- peak = np.mean(fft[idxs[0]:idxs[1]])
- return peak, idxs
-
-
-def _calc_shoulder_hight(fft_db, c):
- assert fft_db.shape == (c.MS_FFT_size,), fft_db.shape
- idxs_left = (c.MS_shoulder_left_start, c.MS_shoulder_left_end)
- idxs_right = (c.MS_shoulder_right_start, c.MS_shoulder_right_end)
-
- shoulder_left = np.mean(fft_db[idxs_left[0]:idxs_left[1]])
- shoulder_right = np.mean(fft_db[idxs_right[0]:idxs_right[1]])
-
- shoulder = np.mean((shoulder_left, shoulder_right))
- return shoulder, (idxs_left, idxs_right)
-
-
-def calc_shoulder(fft, c):
- peak = _calc_peak(fft, c)[0]
- shoulder = _calc_shoulder_hight(fft, c)[0]
- assert (peak >= shoulder), (peak, shoulder)
- return peak, shoulder
-
-
-def shoulder_from_sig_offset(arg):
- signal, offset, c = arg
- fft_db = calc_fft_db(signal, offset, c)
- peak, shoulder = calc_shoulder(fft_db, c)
- return peak - shoulder, peak, shoulder
-
-
-class Measure_Shoulders:
- """Calculate difference between the DAB signal and the shoulder hight in the
- power spectrum"""
-
- def __init__(self, c):
- self.c = c
- self.plot = c.MS_plot
-
- def _plot(self, signal):
- if self.c.plot_location is None:
- return
-
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_sync_subsample_aligned.png"
-
- fft = calc_fft_db(signal, 100, self.c)
- peak, idxs_peak = _calc_peak(fft, self.c)
- shoulder, idxs_sh = _calc_shoulder_hight(fft, self.c)
-
- sub_rows = 1
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub, ax = plt_next_axis(sub_rows, sub_cols, i_sub)
- ax.scatter(np.arange(fft.shape[0]), fft, s=0.1,
- label="FFT",
- color="red")
- ax.plot(idxs_peak, (peak, peak))
- ax.plot(idxs_sh[0], (shoulder, shoulder), color='blue')
- ax.plot(idxs_sh[1], (shoulder, shoulder), color='blue')
- plt_annotate(ax, "Frequency", "Magnitude [dB]", None, 4)
-
- ax.text(100, -17, str(calc_shoulder(fft, self.c)))
-
- ax.set_ylim(-20, 30)
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- def average_shoulders(self, signal, n_avg=None):
- if not self.c.MS_enable:
- logging.info("Shoulder Measurement disabled via Const.py")
- return None
-
- assert signal.shape[0] > 4 * self.c.MS_FFT_size
- if n_avg is None:
- n_avg = self.c.MS_averaging_size
-
- off_min = 0
- off_max = signal.shape[0] - self.c.MS_FFT_size
- offsets = np.linspace(off_min, off_max, num=n_avg, dtype=int)
-
- args = zip(
- [signal, ] * offsets.shape[0],
- offsets,
- [self.c, ] * offsets.shape[0]
- )
-
- pool = multiprocessing.Pool(self.c.MS_n_proc)
- res = pool.map(shoulder_from_sig_offset, args)
- shoulders_diff, shoulders, peaks = zip(*res)
-
- if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot:
- self._plot(signal)
-
- return np.mean(shoulders_diff), np.mean(shoulders), np.mean(peaks)
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Model.py b/dpd/src/Model.py
deleted file mode 100644
index b2c303f..0000000
--- a/dpd/src/Model.py
+++ /dev/null
@@ -1,32 +0,0 @@
-# -*- coding: utf-8 -*-
-from src.Model_Poly import Poly
-from src.Model_Lut import Lut
-
-def select_model_from_dpddata(dpddata):
- if dpddata[0] == 'lut':
- return Lut
- elif dpddata[0] == 'poly':
- return Poly
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-# Copyright (c) 2017 Matthias P. Braendli
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Model_AM.py b/dpd/src/Model_AM.py
deleted file mode 100644
index 75b226f..0000000
--- a/dpd/src/Model_AM.py
+++ /dev/null
@@ -1,122 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, model implementation for Amplitude and not Phase
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-def is_npfloat32(array):
- assert isinstance(array, np.ndarray), type(array)
- assert array.dtype == np.float32, array.dtype
- assert array.flags.contiguous
- assert not any(np.isnan(array))
-
-
-def check_input_get_next_coefs(tx_dpd, rx_received):
- is_npfloat32(tx_dpd)
- is_npfloat32(rx_received)
-
-
-def poly(sig):
- return np.array([sig ** i for i in range(1, 6)]).T
-
-
-def fit_poly(tx_abs, rx_abs):
- return np.linalg.lstsq(poly(rx_abs), tx_abs, rcond=None)[0]
-
-
-def calc_line(coefs, min_amp, max_amp):
- rx_range = np.linspace(min_amp, max_amp)
- tx_est = np.sum(poly(rx_range) * coefs, axis=1)
- return tx_est, rx_range
-
-
-class Model_AM:
- """Calculates new coefficients using the measurement and the previous
- coefficients"""
-
- def __init__(self,
- c,
- learning_rate_am=1,
- plot=False):
- self.c = c
-
- self.learning_rate_am = learning_rate_am
- self.plot = plot
-
- def _plot(self, tx_dpd, rx_received, coefs_am, coefs_am_new):
- if self.plot and self.c.plot_location is not None:
- tx_range, rx_est = calc_line(coefs_am, 0, 0.6)
- tx_range_new, rx_est_new = calc_line(coefs_am_new, 0, 0.6)
-
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_Model_AM.png"
- sub_rows = 1
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_range, rx_est,
- label="Estimated TX",
- alpha=0.3,
- color="gray")
- ax.plot(tx_range_new, rx_est_new,
- label="New Estimated TX",
- color="red")
- ax.scatter(tx_dpd, rx_received,
- label="Binned Data",
- color="blue",
- s=1)
- ax.set_title("Model_AM")
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("RX Amplitude")
- ax.set_xlim(-0.5, 1.5)
- ax.legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- def get_next_coefs(self, tx_dpd, rx_received, coefs_am):
- """Calculate the next AM/AM coefficients using the extracted
- statistic of TX and RX amplitude"""
- check_input_get_next_coefs(tx_dpd, rx_received)
-
- coefs_am_new = fit_poly(tx_dpd, rx_received)
- coefs_am_new = coefs_am + \
- self.learning_rate_am * (coefs_am_new - coefs_am)
-
- self._plot(tx_dpd, rx_received, coefs_am, coefs_am_new)
-
- return coefs_am_new
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Model_Lut.py b/dpd/src/Model_Lut.py
deleted file mode 100644
index e70fdb0..0000000
--- a/dpd/src/Model_Lut.py
+++ /dev/null
@@ -1,60 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, model implementation using polynomial
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import os
-import logging
-import numpy as np
-
-class Lut:
- """Implements a model that calculates lookup table coefficients"""
-
- def __init__(self,
- c,
- learning_rate=1.,
- plot=False):
- """
-
- :rtype:
- """
- logging.debug("Initialising LUT Model")
- self.c = c
- self.learning_rate = learning_rate
- self.plot = plot
- self.reset_coefs()
-
- def reset_coefs(self):
- self.scalefactor = 0xFFFFFFFF # max uint32_t value
- self.lut = np.ones(32, dtype=np.complex64)
-
- def train(self, tx_abs, rx_abs, phase_diff):
- pass
-
- def get_dpd_data(self):
- return "lut", self.scalefactor, self.lut
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-# Copyright (c) 2017 Matthias P. Braendli
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Model_PM.py b/dpd/src/Model_PM.py
deleted file mode 100644
index 7b80bf3..0000000
--- a/dpd/src/Model_PM.py
+++ /dev/null
@@ -1,124 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, model implementation for Amplitude and not Phase
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-def is_npfloat32(array):
- assert isinstance(array, np.ndarray), type(array)
- assert array.dtype == np.float32, array.dtype
- assert array.flags.contiguous
- assert not any(np.isnan(array))
-
-
-def check_input_get_next_coefs(tx_dpd, phase_diff):
- is_npfloat32(tx_dpd)
- is_npfloat32(phase_diff)
-
-
-class Model_PM:
- """Calculates new coefficients using the measurement and the previous
- coefficients"""
-
- def __init__(self,
- c,
- learning_rate_pm=1,
- plot=False):
- self.c = c
-
- self.learning_rate_pm = learning_rate_pm
- self.plot = plot
-
- def _plot(self, tx_dpd, phase_diff, coefs_pm, coefs_pm_new):
- if self.plot and self.c.plot_location is not None:
- tx_range, phase_diff_est = self.calc_line(coefs_pm, 0, 0.6)
- tx_range_new, phase_diff_est_new = self.calc_line(coefs_pm_new, 0, 0.6)
-
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_Model_PM.png"
- sub_rows = 1
- sub_cols = 1
- fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
- i_sub = 0
-
- i_sub += 1
- ax = plt.subplot(sub_rows, sub_cols, i_sub)
- ax.plot(tx_range, phase_diff_est,
- label="Estimated Phase Diff",
- alpha=0.3,
- color="gray")
- ax.plot(tx_range_new, phase_diff_est_new,
- label="New Estimated Phase Diff",
- color="red")
- ax.scatter(tx_dpd, phase_diff,
- label="Binned Data",
- color="blue",
- s=1)
- ax.set_title("Model_PM")
- ax.set_xlabel("TX Amplitude")
- ax.set_ylabel("Phase DIff")
- ax.legend(loc=4)
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- def _discard_small_values(self, tx_dpd, phase_diff):
- """ Assumes that the phase for small tx amplitudes is zero"""
- mask = tx_dpd < self.c.MPM_tx_min
- phase_diff[mask] = 0
- return tx_dpd, phase_diff
-
- def poly(self, sig):
- return np.array([sig ** i for i in range(0, 5)]).T
-
- def fit_poly(self, tx_abs, phase_diff):
- return np.linalg.lstsq(self.poly(tx_abs), phase_diff, rcond=None)[0]
-
- def calc_line(self, coefs, min_amp, max_amp):
- tx_range = np.linspace(min_amp, max_amp)
- phase_diff = np.sum(self.poly(tx_range) * coefs, axis=1)
- return tx_range, phase_diff
-
- def get_next_coefs(self, tx_dpd, phase_diff, coefs_pm):
- """Calculate the next AM/PM coefficients using the extracted
- statistic of TX amplitude and phase difference"""
- tx_dpd, phase_diff = self._discard_small_values(tx_dpd, phase_diff)
- check_input_get_next_coefs(tx_dpd, phase_diff)
-
- coefs_pm_new = self.fit_poly(tx_dpd, phase_diff)
-
- coefs_pm_new = coefs_pm + self.learning_rate_pm * (coefs_pm_new - coefs_pm)
- self._plot(tx_dpd, phase_diff, coefs_pm, coefs_pm_new)
-
- return coefs_pm_new
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Model_Poly.py b/dpd/src/Model_Poly.py
deleted file mode 100644
index cdfd319..0000000
--- a/dpd/src/Model_Poly.py
+++ /dev/null
@@ -1,101 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, model implementation using polynomial
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import os
-import logging
-import numpy as np
-
-import src.Model_AM as Model_AM
-import src.Model_PM as Model_PM
-
-
-def assert_np_float32(x):
- assert isinstance(x, np.ndarray)
- assert x.dtype == np.float32
- assert x.flags.contiguous
-
-
-def _check_input_get_next_coefs(tx_abs, rx_abs, phase_diff):
- assert_np_float32(tx_abs)
- assert_np_float32(rx_abs)
- assert_np_float32(phase_diff)
-
- assert tx_abs.shape == rx_abs.shape, \
- "tx_abs.shape {}, rx_abs.shape {}".format(
- tx_abs.shape, rx_abs.shape)
- assert tx_abs.shape == phase_diff.shape, \
- "tx_abs.shape {}, phase_diff.shape {}".format(
- tx_abs.shape, phase_diff.shape)
-
-
-class Poly:
- """Calculates new coefficients using the measurement and the previous
- coefficients"""
-
- def __init__(self,
- c,
- learning_rate_am=1.0,
- learning_rate_pm=1.0):
- self.c = c
- self.plot = c.MDL_plot
-
- self.learning_rate_am = learning_rate_am
- self.learning_rate_pm = learning_rate_pm
-
- self.reset_coefs()
-
- self.model_am = Model_AM.Model_AM(c, plot=self.plot)
- self.model_pm = Model_PM.Model_PM(c, plot=self.plot)
-
- def reset_coefs(self):
- self.coefs_am = np.zeros(5, dtype=np.float32)
- self.coefs_am[0] = 1
- self.coefs_pm = np.zeros(5, dtype=np.float32)
-
- def train(self, tx_abs, rx_abs, phase_diff, lr=None):
- """
- :type tx_abs: np.ndarray
- :type rx_abs: np.ndarray
- :type phase_diff: np.ndarray
- :type lr: float
- """
- _check_input_get_next_coefs(tx_abs, rx_abs, phase_diff)
-
- if not lr is None:
- self.model_am.learning_rate_am = lr
- self.model_pm.learning_rate_pm = lr
-
- coefs_am_new = self.model_am.get_next_coefs(tx_abs, rx_abs, self.coefs_am)
- coefs_pm_new = self.model_pm.get_next_coefs(tx_abs, phase_diff, self.coefs_pm)
-
- self.coefs_am = self.coefs_am + (coefs_am_new - self.coefs_am) * self.learning_rate_am
- self.coefs_pm = self.coefs_pm + (coefs_pm_new - self.coefs_pm) * self.learning_rate_pm
-
- def get_dpd_data(self):
- return "poly", self.coefs_am, self.coefs_pm
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/RX_Agc.py b/dpd/src/RX_Agc.py
deleted file mode 100644
index f778dee..0000000
--- a/dpd/src/RX_Agc.py
+++ /dev/null
@@ -1,166 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# Automatic Gain Control
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import time
-import numpy as np
-import matplotlib
-matplotlib.use('agg')
-import matplotlib.pyplot as plt
-
-import src.Adapt as Adapt
-import src.Measure as Measure
-
-class Agc:
- """The goal of the automatic gain control is to set the
- RX gain to a value at which all received amplitudes can
- be detected. This means that the maximum possible amplitude
- should be quantized at the highest possible digital value.
-
- A problem we have to face, is that the estimation of the
- maximum amplitude by applying the max() function is very
- unstable. This is due to the maximum’s rareness. Therefore
- we estimate a far more robust value, such as the median,
- and then approximate the maximum amplitude from it.
-
- Given this, we tune the RX gain in such a way, that the
- received signal fulfills our desired property, of having
- all amplitudes properly quantized."""
-
- def __init__(self, measure, adapt, c):
- assert isinstance(measure, Measure.Measure)
- assert isinstance(adapt, Adapt.Adapt)
- self.measure = measure
- self.adapt = adapt
- self.min_rxgain = c.RAGC_min_rxgain
- self.rxgain = self.min_rxgain
- self.peak_to_median = 1./c.RAGC_rx_median_target
-
- def run(self):
- self.adapt.set_rxgain(self.rxgain)
-
- for i in range(2):
- # Measure
- txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median= \
- self.measure.get_samples()
-
- # Estimate Maximum
- rx_peak = self.peak_to_median * rx_median
- correction_factor = 20*np.log10(1/rx_peak)
- self.rxgain = self.rxgain + correction_factor
-
- assert self.min_rxgain <= self.rxgain, ("Desired RX Gain is {} which is smaller than the minimum of {}".format(
- self.rxgain, self.min_rxgain))
-
- logging.info("RX Median {:1.4f}, estimated peak {:1.4f}, correction factor {:1.4f}, new RX gain {:1.4f}".format(
- rx_median, rx_peak, correction_factor, self.rxgain
- ))
-
- self.adapt.set_rxgain(self.rxgain)
- time.sleep(0.5)
-
- def plot_estimates(self):
- """Plots the estimate of for Max, Median, Mean for different
- number of samples."""
- if self.c.plot_location is None:
- return
-
- self.adapt.set_rxgain(self.min_rxgain)
- time.sleep(1)
-
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_agc.png"
- fig, axs = plt.subplots(2, 2, figsize=(3*6,1*6))
- axs = axs.ravel()
-
- for j in range(5):
- txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median =\
- self.measure.get_samples()
-
- rxframe_aligned_abs = np.abs(rxframe_aligned)
-
- x = np.arange(100, rxframe_aligned_abs.shape[0], dtype=int)
- rx_max_until = []
- rx_median_until = []
- rx_mean_until = []
- for i in x:
- rx_max_until.append(np.max(rxframe_aligned_abs[:i]))
- rx_median_until.append(np.median(rxframe_aligned_abs[:i]))
- rx_mean_until.append(np.mean(rxframe_aligned_abs[:i]))
-
- axs[0].plot(x,
- rx_max_until,
- label="Run {}".format(j+1),
- color=matplotlib.colors.hsv_to_rgb((1./(j+1.),0.8,0.7)),
- linestyle="-", linewidth=0.25)
- axs[0].set_xlabel("Samples")
- axs[0].set_ylabel("Amplitude")
- axs[0].set_title("Estimation for Maximum RX Amplitude")
- axs[0].legend()
-
- axs[1].plot(x,
- rx_median_until,
- label="Run {}".format(j+1),
- color=matplotlib.colors.hsv_to_rgb((1./(j+1.),0.9,0.7)),
- linestyle="-", linewidth=0.25)
- axs[1].set_xlabel("Samples")
- axs[1].set_ylabel("Amplitude")
- axs[1].set_title("Estimation for Median RX Amplitude")
- axs[1].legend()
- ylim_1 = axs[1].get_ylim()
-
- axs[2].plot(x,
- rx_mean_until,
- label="Run {}".format(j+1),
- color=matplotlib.colors.hsv_to_rgb((1./(j+1.),0.9,0.7)),
- linestyle="-", linewidth=0.25)
- axs[2].set_xlabel("Samples")
- axs[2].set_ylabel("Amplitude")
- axs[2].set_title("Estimation for Mean RX Amplitude")
- ylim_2 = axs[2].get_ylim()
- axs[2].legend()
-
- axs[1].set_ylim(min(ylim_1[0], ylim_2[0]),
- max(ylim_1[1], ylim_2[1]))
-
- fig.tight_layout()
- fig.savefig(fig_path)
-
- axs[3].hist(rxframe_aligned_abs, bins=60)
- axs[3].set_xlabel("Amplitude")
- axs[3].set_ylabel("Frequency")
- axs[3].set_title("Histogram of Amplitudes")
- axs[3].legend()
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/Symbol_align.py b/dpd/src/Symbol_align.py
deleted file mode 100644
index 2a17a65..0000000
--- a/dpd/src/Symbol_align.py
+++ /dev/null
@@ -1,193 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, Modulation Error Rate.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import numpy as np
-import scipy
-import matplotlib
-
-matplotlib.use('agg')
-import matplotlib.pyplot as plt
-
-
-def _remove_outliers(x, stds=5):
- deviation_from_mean = np.abs(x - np.mean(x))
- inlier_idxs = deviation_from_mean < stds * np.std(x)
- x = x[inlier_idxs]
- return x
-
-
-def _calc_delta_angle(fft):
- # Introduce invariance against carrier
- angles = np.angle(fft) % (np.pi / 2.)
-
- # Calculate Angle difference and compensate jumps
- deltas_angle = np.diff(angles)
- deltas_angle[deltas_angle > np.pi / 4.] = \
- deltas_angle[deltas_angle > np.pi / 4.] - np.pi / 2.
- deltas_angle[-deltas_angle > np.pi / 4.] = \
- deltas_angle[-deltas_angle > np.pi / 4.] + np.pi / 2.
- deltas_angle = _remove_outliers(deltas_angle)
-
- delta_angle = np.mean(deltas_angle)
-
- return delta_angle
-
-
-class Symbol_align:
- """
- Find the phase offset to the start of the DAB symbols in an
- unaligned dab signal.
- """
-
- def __init__(self, c, plot=False):
- self.c = c
- self.plot = plot
- pass
-
- def _calc_offset_to_first_symbol_without_prefix(self, tx):
- tx_orig = tx[0:-self.c.T_U]
- tx_cut_prefix = tx[self.c.T_U:]
-
- tx_product = np.abs(tx_orig - tx_cut_prefix)
- tx_product_avg = np.correlate(
- tx_product,
- np.ones(self.c.T_C),
- mode='valid')
- tx_product_avg_min_filt = \
- scipy.ndimage.filters.minimum_filter1d(
- tx_product_avg,
- int(1.5 * self.c.T_S)
- )
- peaks = np.ravel(np.where(tx_product_avg == tx_product_avg_min_filt))
-
- offset = peaks[np.argmin([tx_product_avg[peak] for peak in peaks])]
-
- if self.plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_Symbol_align.png"
-
- fig = plt.figure(figsize=(9, 9))
-
- ax = fig.add_subplot(4, 1, 1)
- ax.plot(tx_product)
- ylim = ax.get_ylim()
- for peak in peaks:
- ax.plot((peak, peak), (ylim[0], ylim[1]))
- if peak == offset:
- ax.text(peak, ylim[0] + 0.3 * np.diff(ylim), "offset", rotation=90)
- else:
- ax.text(peak, ylim[0] + 0.2 * np.diff(ylim), "peak", rotation=90)
- ax.set_xlabel("Sample")
- ax.set_ylabel("Conj. Product")
- ax.set_title("Difference with shifted self")
-
- ax = fig.add_subplot(4, 1, 2)
- ax.plot(tx_product_avg)
- ylim = ax.get_ylim()
- for peak in peaks:
- ax.plot((peak, peak), (ylim[0], ylim[1]))
- if peak == offset:
- ax.text(peak, ylim[0] + 0.3 * np.diff(ylim), "offset", rotation=90)
- else:
- ax.text(peak, ylim[0] + 0.2 * np.diff(ylim), "peak", rotation=90)
- ax.set_xlabel("Sample")
- ax.set_ylabel("Conj. Product")
- ax.set_title("Moving Average")
-
- ax = fig.add_subplot(4, 1, 3)
- ax.plot(tx_product_avg_min_filt)
- ylim = ax.get_ylim()
- for peak in peaks:
- ax.plot((peak, peak), (ylim[0], ylim[1]))
- if peak == offset:
- ax.text(peak, ylim[0] + 0.3 * np.diff(ylim), "offset", rotation=90)
- else:
- ax.text(peak, ylim[0] + 0.2 * np.diff(ylim), "peak", rotation=90)
- ax.set_xlabel("Sample")
- ax.set_ylabel("Conj. Product")
- ax.set_title("Min Filter")
-
- ax = fig.add_subplot(4, 1, 4)
- tx_product_crop = tx_product[peaks[0] - 50:peaks[0] + 50]
- x = range(tx_product.shape[0])[peaks[0] - 50:peaks[0] + 50]
- ax.plot(x, tx_product_crop)
- ylim = ax.get_ylim()
- ax.plot((peaks[0], peaks[0]), (ylim[0], ylim[1]))
- ax.set_xlabel("Sample")
- ax.set_ylabel("Conj. Product")
- ax.set_title("Difference with shifted self")
-
- fig.tight_layout()
- fig.savefig(fig_path)
- plt.close(fig)
-
- # "offset" measures where the shifted signal matches the
- # original signal. Therefore we have to subtract the size
- # of the shift to find the offset of the symbol start.
- return (offset + self.c.T_C) % self.c.T_S
-
- def _delta_angle_to_samples(self, angle):
- return - angle / self.c.phase_offset_per_sample
-
- def _calc_sample_offset(self, sig):
- assert sig.shape[0] == self.c.T_U, \
- "Input length is not a Symbol without cyclic prefix"
-
- fft = np.fft.fftshift(np.fft.fft(sig))
- fft_crop = np.delete(fft[self.c.FFT_start:self.c.FFT_end], self.c.FFT_delete)
- delta_angle = _calc_delta_angle(fft_crop)
- delta_sample = self._delta_angle_to_samples(delta_angle)
- delta_sample_int = np.round(delta_sample).astype(int)
- error = np.abs(delta_sample_int - delta_sample)
- if error > 0.1:
- raise RuntimeError("Could not calculate " \
- "sample offset. Error {}".format(error))
- return delta_sample_int
-
- def calc_offset(self, tx):
- """Calculate the offset the first symbol"""
- off_sym = self._calc_offset_to_first_symbol_without_prefix(
- tx)
- off_sam = self._calc_sample_offset(
- tx[off_sym:off_sym + self.c.T_U])
- off = (off_sym + off_sam) % self.c.T_S
-
- assert self._calc_sample_offset(tx[off:off + self.c.T_U]) == 0, \
- "Failed to calculate offset"
- return off
-
- def crop_symbol_without_cyclic_prefix(self, tx):
- off = self.calc_offset(tx)
- return tx[
- off:
- off + self.c.T_U
- ]
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/TX_Agc.py b/dpd/src/TX_Agc.py
deleted file mode 100644
index 309193d..0000000
--- a/dpd/src/TX_Agc.py
+++ /dev/null
@@ -1,131 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, Automatic Gain Control.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-
-import datetime
-import os
-import logging
-import time
-import numpy as np
-import matplotlib
-
-matplotlib.use('agg')
-import matplotlib.pyplot as plt
-
-import src.Adapt as Adapt
-
-
-# TODO fix for float tx_gain
-class TX_Agc:
- def __init__(self,
- adapt,
- c):
- """
- In order to avoid digital clipping, this class increases the
- TX gain and reduces the digital gain. Digital clipping happens
- when the digital analog converter receives values greater than
- it's maximal output. This class solves that problem by adapting
- the TX gain in a way that the peaks of the TX signal are in a
- specified range. The TX gain is adapted accordingly. The TX peaks
- are approximated by estimating it based on the signal median.
-
- :param adapt: Instance of Adapt Class to update
- txgain and coefficients
- :param max_txgain: limit for TX gain
- :param tx_median_threshold_max: if the median of TX is larger
- than this value, then the digital gain is reduced
- :param tx_median_threshold_min: if the median of TX is smaller
- than this value, then the digital gain is increased
- :param tx_median_target: The digital gain is reduced in a way that
- the median TX value is expected to be lower than this value.
- """
-
- assert isinstance(adapt, Adapt.Adapt)
- self.adapt = adapt
- self.max_txgain = c.TAGC_max_txgain
- self.txgain = self.max_txgain
-
- self.tx_median_threshold_tolerate_max = c.TAGC_tx_median_max
- self.tx_median_threshold_tolerate_min = c.TAGC_tx_median_min
- self.tx_median_target = c.TAGC_tx_median_target
-
- def _calc_new_tx_gain(self, tx_median):
- delta_db = 20 * np.log10(self.tx_median_target / tx_median)
- new_txgain = self.adapt.get_txgain() - delta_db
- assert new_txgain < self.max_txgain, \
- "TX_Agc failed. New TX gain of {} is too large.".format(
- new_txgain
- )
- return new_txgain, delta_db
-
- def _calc_digital_gain(self, delta_db):
- digital_gain_factor = 10 ** (delta_db / 20.)
- digital_gain = self.adapt.get_digital_gain() * digital_gain_factor
- return digital_gain, digital_gain_factor
-
- def _set_tx_gain(self, new_txgain):
- self.adapt.set_txgain(new_txgain)
- txgain = self.adapt.get_txgain()
- return txgain
-
- def _have_to_adapt(self, tx_median):
- too_large = tx_median > self.tx_median_threshold_tolerate_max
- too_small = tx_median < self.tx_median_threshold_tolerate_min
- return too_large or too_small
-
- def adapt_if_necessary(self, tx):
- tx_median = np.median(np.abs(tx))
-
- if self._have_to_adapt(tx_median):
- # Calculate new values
- new_txgain, delta_db = self._calc_new_tx_gain(tx_median)
- digital_gain, digital_gain_factor = \
- self._calc_digital_gain(delta_db)
-
- # Set new values.
- # Avoid temorary increase of output power with correct order
- if digital_gain_factor < 1:
- self.adapt.set_digital_gain(digital_gain)
- time.sleep(0.5)
- txgain = self._set_tx_gain(new_txgain)
- time.sleep(1)
- else:
- txgain = self._set_tx_gain(new_txgain)
- time.sleep(1)
- self.adapt.set_digital_gain(digital_gain)
- time.sleep(0.5)
-
- logging.info(
- "digital_gain = {}, txgain_new = {}, " \
- "delta_db = {}, tx_median {}, " \
- "digital_gain_factor = {}".
- format(digital_gain, txgain, delta_db,
- tx_median, digital_gain_factor))
-
- return True
- return False
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/__init__.py b/dpd/src/__init__.py
deleted file mode 100644
index e69de29..0000000
--- a/dpd/src/__init__.py
+++ /dev/null
diff --git a/dpd/src/phase_align.py b/dpd/src/phase_align.py
deleted file mode 100644
index 8654333..0000000
--- a/dpd/src/phase_align.py
+++ /dev/null
@@ -1,98 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, phase-align a signal against a reference.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-import datetime
-import os
-import logging
-import numpy as np
-import matplotlib.pyplot as plt
-
-
-def phase_align(sig, ref_sig, plot=False):
- """Do phase alignment for sig relative to the reference signal
- ref_sig.
-
- Returns the aligned signal"""
-
- angle_diff = (np.angle(sig) - np.angle(ref_sig)) % (2. * np.pi)
-
- real_diffs = np.cos(angle_diff)
- imag_diffs = np.sin(angle_diff)
-
- if plot and self.c.plot_location is not None:
- dt = datetime.datetime.now().isoformat()
- fig_path = self.c.plot_location + "/" + dt + "_phase_align.png"
-
- plt.subplot(511)
- plt.hist(angle_diff, bins=60, label="Angle Diff")
- plt.xlabel("Angle")
- plt.ylabel("Count")
- plt.legend(loc=4)
-
- plt.subplot(512)
- plt.hist(real_diffs, bins=60, label="Real Diff")
- plt.xlabel("Real Part")
- plt.ylabel("Count")
- plt.legend(loc=4)
-
- plt.subplot(513)
- plt.hist(imag_diffs, bins=60, label="Imaginary Diff")
- plt.xlabel("Imaginary Part")
- plt.ylabel("Count")
- plt.legend(loc=4)
-
- plt.subplot(514)
- plt.plot(np.angle(ref_sig[:128]), label="ref_sig")
- plt.plot(np.angle(sig[:128]), label="sig")
- plt.xlabel("Angle")
- plt.ylabel("Sample")
- plt.legend(loc=4)
-
- real_diff = np.median(real_diffs)
- imag_diff = np.median(imag_diffs)
-
- angle = np.angle(real_diff + 1j * imag_diff)
-
- logging.debug(
- "Compensating phase by {} rad, {} degree. real median {}, imag median {}".format(
- angle, angle*180./np.pi, real_diff, imag_diff
- ))
- sig = sig * np.exp(1j * -angle)
-
- if logging.getLogger().getEffectiveLevel() == logging.DEBUG and plot:
- plt.subplot(515)
- plt.plot(np.angle(ref_sig[:128]), label="ref_sig")
- plt.plot(np.angle(sig[:128]), label="sig")
- plt.xlabel("Angle")
- plt.ylabel("Sample")
- plt.legend(loc=4)
- plt.tight_layout()
- plt.savefig(fig_path)
- plt.close()
-
- return sig
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.
diff --git a/dpd/src/subsample_align.py b/dpd/src/subsample_align.py
deleted file mode 100755
index 20ae56b..0000000
--- a/dpd/src/subsample_align.py
+++ /dev/null
@@ -1,111 +0,0 @@
-# -*- coding: utf-8 -*-
-#
-# DPD Computation Engine, utility to do subsample alignment.
-#
-# http://www.opendigitalradio.org
-# Licence: The MIT License, see notice at the end of this file
-import datetime
-import logging
-import os
-import numpy as np
-from scipy import optimize
-import matplotlib.pyplot as plt
-
-def gen_omega(length):
- if (length % 2) == 1:
- raise ValueError("Needs an even length array.")
-
- halflength = int(length / 2)
- factor = 2.0 * np.pi / length
-
- omega = np.zeros(length, dtype=np.float)
- for i in range(halflength):
- omega[i] = factor * i
-
- for i in range(halflength, length):
- omega[i] = factor * (i - length)
-
- return omega
-
-
-def subsample_align(sig, ref_sig, plot_location=None):
- """Do subsample alignment for sig relative to the reference signal
- ref_sig. The delay between the two must be less than sample
-
- Returns the aligned signal"""
-
- n = len(sig)
- if (n % 2) == 1:
- raise ValueError("Needs an even length signal.")
- halflen = int(n / 2)
-
- fft_sig = np.fft.fft(sig)
-
- omega = gen_omega(n)
-
- def correlate_for_delay(tau):
- # A subsample offset between two signals corresponds, in the frequency
- # domain, to a linearly increasing phase shift, whose slope
- # corresponds to the delay.
- #
- # Here, we build this phase shift in rotate_vec, and multiply it with
- # our signal.
-
- rotate_vec = np.exp(1j * tau * omega)
- # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the
- # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which
- # is both the maximum positive and negative frequency.
- # I don't remember why we handle it differently.
- rotate_vec[halflen] = np.cos(np.pi * tau)
-
- corr_sig = np.fft.ifft(rotate_vec * fft_sig)
-
- return -np.abs(np.sum(np.conj(corr_sig) * ref_sig))
-
- optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1, 1), method='bounded',
- options={'disp': True})
-
- if optim_result.success:
- best_tau = optim_result.x
-
- if plot_location is not None:
- corr = np.vectorize(correlate_for_delay)
- ixs = np.linspace(-1, 1, 100)
- taus = corr(ixs)
-
- dt = datetime.datetime.now().isoformat()
- tau_path = (plot_location + "/" + dt + "_tau.png")
- plt.plot(ixs, taus)
- plt.title("Subsample correlation, minimum is best: {}".format(best_tau))
- plt.savefig(tau_path)
- plt.close()
-
- # Prepare rotate_vec = fft_sig with rotated phase
- rotate_vec = np.exp(1j * best_tau * omega)
- rotate_vec[halflen] = np.cos(np.pi * best_tau)
- return np.fft.ifft(rotate_vec * fft_sig).astype(np.complex64)
- else:
- # print("Could not optimize: " + optim_result.message)
- return np.zeros(0, dtype=np.complex64)
-
-# The MIT License (MIT)
-#
-# Copyright (c) 2017 Andreas Steger
-#
-# Permission is hereby granted, free of charge, to any person obtaining a copy
-# of this software and associated documentation files (the "Software"), to deal
-# in the Software without restriction, including without limitation the rights
-# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-# copies of the Software, and to permit persons to whom the Software is
-# furnished to do so, subject to the following conditions:
-#
-# The above copyright notice and this permission notice shall be included in all
-# copies or substantial portions of the Software.
-#
-# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-# SOFTWARE.