diff options
Diffstat (limited to 'dpd/src')
-rw-r--r-- | dpd/src/Dab_Util.py | 82 | ||||
-rw-r--r-- | dpd/src/Measure.py | 42 |
2 files changed, 66 insertions, 58 deletions
diff --git a/dpd/src/Dab_Util.py b/dpd/src/Dab_Util.py index e0e8fcd..31366f5 100644 --- a/dpd/src/Dab_Util.py +++ b/dpd/src/Dab_Util.py @@ -62,19 +62,19 @@ class Dab_Util: l_orig = float(l) / n_up return l_orig - def subsample_align_upsampling(self, sig1, sig2, n_up=32): + def subsample_align_upsampling(self, sig_tx, sig_rx, n_up=32): """ - Returns an aligned version of sig1 and sig2 by cropping and subsample alignment + Returns an aligned version of sig_tx and sig_rx by cropping and subsample alignment Using upsampling """ - assert(sig1.shape[0] == sig2.shape[0]) + assert(sig_tx.shape[0] == sig_rx.shape[0]) - if sig1.shape[0] % 2 == 1: - sig1 = sig1[:-1] - sig2 = sig2[:-1] + if sig_tx.shape[0] % 2 == 1: + sig_tx = sig_tx[:-1] + sig_rx = sig_rx[:-1] - sig1_up = signal.resample(sig1, sig1.shape[0] * n_up) - sig2_up = signal.resample(sig2, sig2.shape[0] * n_up) + sig1_up = signal.resample(sig_tx, sig_tx.shape[0] * n_up) + sig2_up = signal.resample(sig_rx, sig_rx.shape[0] * n_up) off_meas = self.lag_upsampling(sig2_up, sig1_up, n_up=1) off = int(abs(off_meas)) @@ -86,13 +86,13 @@ class Dab_Util: sig1_up = sig1_up[off:] sig2_up = sig2_up[:-off] - sig1 = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64) - sig2 = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64) - return sig1, sig2 + sig_tx = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64) + sig_rx = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64) + return sig_tx, sig_rx - def subsample_align(self, sig1, sig2): + def subsample_align(self, sig_tx, sig_rx): """ - Returns an aligned version of sig1 and sig2 by cropping and subsample alignment + Returns an aligned version of sig_tx and sig_rx by cropping and subsample alignment """ if logging.getLogger().getEffectiveLevel() == logging.DEBUG: @@ -100,15 +100,15 @@ class Dab_Util: fig_path = logging_path + "/" + dt + "_sync_raw.pdf" fig, axs = plt.subplots(2) - axs[0].plot(np.abs(sig1[:128]), label="TX Frame") - axs[0].plot(np.abs(sig2[:128]), label="RX Frame") + axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame") + axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame") axs[0].set_title("Raw Data") axs[0].set_ylabel("Amplitude") axs[0].set_xlabel("Samples") axs[0].legend(loc=4) - axs[1].plot(np.real(sig1[:128]), label="TX Frame") - axs[1].plot(np.real(sig2[:128]), label="RX Frame") + axs[1].plot(np.real(sig_tx[:128]), label="TX Frame") + axs[1].plot(np.real(sig_rx[:128]), label="RX Frame") axs[1].set_title("Raw Data") axs[1].set_ylabel("Real Part") axs[1].set_xlabel("Samples") @@ -118,35 +118,35 @@ class Dab_Util: fig.savefig(fig_path) fig.clf() - logging.debug("Sig1_orig: %d %s, Sig2_orig: %d %s" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype)) - off_meas = self.lag_upsampling(sig2, sig1, n_up=1) + logging.debug("Sig1_orig: %d %s, Sig2_orig: %d %s" % (len(sig_tx), sig_tx.dtype, len(sig_rx), sig_rx.dtype)) + off_meas = self.lag_upsampling(sig_rx, sig_tx, n_up=1) off = int(abs(off_meas)) if off_meas > 0: - sig1 = sig1[:-off] - sig2 = sig2[off:] + sig_tx = sig_tx[:-off] + sig_rx = sig_rx[off:] elif off_meas < 0: - sig1 = sig1[off:] - sig2 = sig2[:-off] + sig_tx = sig_tx[off:] + sig_rx = sig_rx[:-off] if off % 2 == 1: - sig1 = sig1[:-1] - sig2 = sig2[:-1] + sig_tx = sig_tx[:-1] + sig_rx = sig_rx[:-1] if logging.getLogger().getEffectiveLevel() == logging.DEBUG: dt = datetime.datetime.now().isoformat() fig_path = logging_path + "/" + dt + "_sync_sample_aligned.pdf" fig, axs = plt.subplots(2) - axs[0].plot(np.abs(sig1[:128]), label="TX Frame") - axs[0].plot(np.abs(sig2[:128]), label="RX Frame") + axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame") + axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame") axs[0].set_title("Sample Aligned Data") axs[0].set_ylabel("Amplitude") axs[0].set_xlabel("Samples") axs[0].legend(loc=4) - axs[1].plot(np.real(sig1[:128]), label="TX Frame") - axs[1].plot(np.real(sig2[:128]), label="RX Frame") + axs[1].plot(np.real(sig_tx[:128]), label="TX Frame") + axs[1].plot(np.real(sig_rx[:128]), label="RX Frame") axs[1].set_ylabel("Real Part") axs[1].set_xlabel("Samples") axs[1].legend(loc=4) @@ -156,22 +156,22 @@ class Dab_Util: fig.clf() - sig2 = sa.subsample_align(sig2, sig1) + sig_rx = sa.subsample_align(sig_rx, sig_tx) if logging.getLogger().getEffectiveLevel() == logging.DEBUG: dt = datetime.datetime.now().isoformat() fig_path = logging_path + "/" + dt + "_sync_subsample_aligned.pdf" fig, axs = plt.subplots(2) - axs[0].plot(np.abs(sig1[:128]), label="TX Frame") - axs[0].plot(np.abs(sig2[:128]), label="RX Frame") + axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame") + axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame") axs[0].set_title("Subsample Aligned") axs[0].set_ylabel("Amplitude") axs[0].set_xlabel("Samples") axs[0].legend(loc=4) - axs[1].plot(np.real(sig1[:128]), label="TX Frame") - axs[1].plot(np.real(sig2[:128]), label="RX Frame") + axs[1].plot(np.real(sig_tx[:128]), label="TX Frame") + axs[1].plot(np.real(sig_rx[:128]), label="RX Frame") axs[1].set_ylabel("Real Part") axs[1].set_xlabel("Samples") axs[1].legend(loc=4) @@ -180,22 +180,22 @@ class Dab_Util: fig.savefig(fig_path) fig.clf() - sig2 = pa.phase_align(sig2, sig1) + sig_rx = pa.phase_align(sig_rx, sig_tx) if logging.getLogger().getEffectiveLevel() == logging.DEBUG: dt = datetime.datetime.now().isoformat() fig_path = logging_path + "/" + dt + "_sync_phase_aligned.pdf" fig, axs = plt.subplots(2) - axs[0].plot(np.abs(sig1[:128]), label="TX Frame") - axs[0].plot(np.abs(sig2[:128]), label="RX Frame") + axs[0].plot(np.abs(sig_tx[:128]), label="TX Frame") + axs[0].plot(np.abs(sig_rx[:128]), label="RX Frame") axs[0].set_title("Phase Aligned") axs[0].set_ylabel("Amplitude") axs[0].set_xlabel("Samples") axs[0].legend(loc=4) - axs[1].plot(np.real(sig1[:128]), label="TX Frame") - axs[1].plot(np.real(sig2[:128]), label="RX Frame") + axs[1].plot(np.real(sig_tx[:128]), label="TX Frame") + axs[1].plot(np.real(sig_rx[:128]), label="RX Frame") axs[1].set_ylabel("Real Part") axs[1].set_xlabel("Samples") axs[1].legend(loc=4) @@ -204,8 +204,8 @@ class Dab_Util: fig.savefig(fig_path) fig.clf() - logging.debug("Sig1_cut: %d %s, Sig2_cut: %d %s, off: %d" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype, off)) - return sig1, sig2 + logging.debug("Sig1_cut: %d %s, Sig2_cut: %d %s, off: %d" % (len(sig_tx), sig_tx.dtype, len(sig_rx), sig_rx.dtype, off)) + return sig_tx, sig_rx def fromfile(self, filename, offset=0, length=None): if length is None: diff --git a/dpd/src/Measure.py b/dpd/src/Measure.py index f48d28f..f6644bb 100644 --- a/dpd/src/Measure.py +++ b/dpd/src/Measure.py @@ -40,13 +40,7 @@ class Measure: bufs.append(b) return b''.join(bufs) - def get_samples(self): - """Connect to ODR-DabMod, retrieve TX and RX samples, load - into numpy arrays, and return a tuple - (tx_timestamp, tx_samples, rx_timestamp, rx_samples) - where the timestamps are doubles, and the samples are numpy - arrays of complex floats, both having the same size - """ + def receive_tcp(self): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect(('localhost', self.port)) @@ -78,24 +72,38 @@ class Measure: else: rxframe = np.array([], dtype=np.complex64) - # Normalize received signal with sent signal - rx_median = np.median(np.abs(rxframe)) - rxframe = rxframe / rx_median * np.median(np.abs(txframe)) - if logging.getLogger().getEffectiveLevel() == logging.DEBUG: logging.debug("txframe: min %f, max %f, median %f" % - (np.min(np.abs(txframe)), - np.max(np.abs(txframe)), - np.median(np.abs(txframe)))) + (np.min(np.abs(txframe)), + np.max(np.abs(txframe)), + np.median(np.abs(txframe)))) logging.debug("rxframe: min %f, max %f, median %f" % - (np.min(np.abs(rxframe)), - np.max(np.abs(rxframe)), - np.median(np.abs(rxframe)))) + (np.min(np.abs(rxframe)), + np.max(np.abs(rxframe)), + np.median(np.abs(rxframe)))) logging.debug("Disconnecting") s.close() + return txframe, tx_ts, rxframe, rx_ts + + + def get_samples(self): + """Connect to ODR-DabMod, retrieve TX and RX samples, load + into numpy arrays, and return a tuple + (tx_timestamp, tx_samples, rx_timestamp, rx_samples) + where the timestamps are doubles, and the samples are numpy + arrays of complex floats, both having the same size + """ + + txframe, tx_ts, rxframe, rx_ts = self.receive_tcp() + txframe_end = txframe[-100:] + + # Normalize received signal with sent signal + rx_median = np.median(np.abs(rxframe)) + rxframe = rxframe / rx_median * np.median(np.abs(txframe)) + du = DU.Dab_Util(self.samplerate) txframe_aligned, rxframe_aligned = du.subsample_align(txframe, rxframe) |