diff options
Diffstat (limited to 'dpd/src/subsample_align.py')
-rwxr-xr-x | dpd/src/subsample_align.py | 83 |
1 files changed, 83 insertions, 0 deletions
diff --git a/dpd/src/subsample_align.py b/dpd/src/subsample_align.py new file mode 100755 index 0000000..0a51593 --- /dev/null +++ b/dpd/src/subsample_align.py @@ -0,0 +1,83 @@ +import datetime +import os +import logging +logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename) + +import numpy as np +from scipy import signal, optimize +import matplotlib.pyplot as plt + +def gen_omega(length): + if (length % 2) == 1: + raise ValueError("Needs an even length array.") + + halflength = int(length/2) + factor = 2.0 * np.pi / length + + omega = np.zeros(length, dtype=np.float) + for i in range(halflength): + omega[i] = factor * i + + for i in range(halflength, length): + omega[i] = factor * (i - length) + + return omega + +def subsample_align(sig, ref_sig): + """Do subsample alignment for sig relative to the reference signal + ref_sig. The delay between the two must be less than sample + + Returns the aligned signal""" + + n = len(sig) + if (n % 2) == 1: + raise ValueError("Needs an even length signal.") + halflen = int(n/2) + + fft_sig = np.fft.fft(sig) + + omega = gen_omega(n) + + def correlate_for_delay(tau): + # A subsample offset between two signals corresponds, in the frequency + # domain, to a linearly increasing phase shift, whose slope + # corresponds to the delay. + # + # Here, we build this phase shift in rotate_vec, and multiply it with + # our signal. + + rotate_vec = np.exp(1j * tau * omega) + # zero-frequency is rotate_vec[0], so rotate_vec[N/2] is the + # bin corresponding to the [-1, 1, -1, 1, ...] time signal, which + # is both the maximum positive and negative frequency. + # I don't remember why we handle it differently. + rotate_vec[halflen] = np.cos(np.pi * tau) + + corr_sig = np.fft.ifft(rotate_vec * fft_sig) + + return -np.abs(np.sum(np.conj(corr_sig) * ref_sig)) + + optim_result = optimize.minimize_scalar(correlate_for_delay, bounds=(-1,1), method='bounded', options={'disp': True}) + + if optim_result.success: + best_tau = optim_result.x + + if 1: + corr = np.vectorize(correlate_for_delay) + ixs = np.linspace(-1, 1, 100) + taus = corr(ixs) + + dt = datetime.datetime.now().isoformat() + tau_path = (logging_path + "/" + dt + "_tau.pdf") + plt.plot(ixs, taus) + plt.title("Subsample correlation, minimum is best: {}".format(best_tau)) + plt.savefig(tau_path) + plt.clf() + + # Prepare rotate_vec = fft_sig with rotated phase + rotate_vec = np.exp(1j * best_tau * omega) + rotate_vec[halflen] = np.cos(np.pi * best_tau) + return np.fft.ifft(rotate_vec * fft_sig).astype(np.complex64) + else: + #print("Could not optimize: " + optim_result.message) + return np.zeros(0, dtype=np.complex64) |