summaryrefslogtreecommitdiffstats
path: root/dpd/src/Model.py
diff options
context:
space:
mode:
Diffstat (limited to 'dpd/src/Model.py')
-rw-r--r--dpd/src/Model.py259
1 files changed, 146 insertions, 113 deletions
diff --git a/dpd/src/Model.py b/dpd/src/Model.py
index 827027a..a23f0ce 100644
--- a/dpd/src/Model.py
+++ b/dpd/src/Model.py
@@ -15,7 +15,7 @@ import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
-class Model:
+class PolyModel:
"""Calculates new coefficients using the measurement and the old
coefficients"""
@@ -28,6 +28,7 @@ class Model:
learning_rate_am=1.,
learning_rate_pm=1.,
plot=False):
+ logging.debug("Initialising Poly Model")
self.c = c
self.SA = SA
self.MER = MER
@@ -35,7 +36,10 @@ class Model:
self.learning_rate_am = learning_rate_am
self.learning_rate_pm = learning_rate_pm
- self.coefs_am = coefs_am
+ if coefs_am is None:
+ self.coefs_am = [1.0, 0, 0, 0, 0]
+ else:
+ self.coefs_am = coefs_am
self.coefs_am_history = [coefs_am, ]
self.mses_am = []
self.errs_am = []
@@ -43,116 +47,17 @@ class Model:
self.tx_mers = []
self.rx_mers = []
- self.coefs_pm = coefs_pm
+ if coefs_pm is None:
+ self.coefs_pm = [0, 0, 0, 0, 0]
+ else:
+ self.coefs_pm = coefs_pm
self.coefs_pm_history = [coefs_pm, ]
self.errs_pm = []
self.plot = plot
- def sample_uniformly(self, tx_dpd, rx_received, n_bins=5):
- """This function returns tx and rx samples in a way
- that the tx amplitudes have an approximate uniform
- distribution with respect to the tx_dpd amplitudes"""
- mask = np.logical_and((np.abs(tx_dpd) > 0.01), (np.abs(rx_received) > 0.01))
- tx_dpd = tx_dpd[mask]
- rx_received = rx_received[mask]
-
- txframe_aligned_abs = np.abs(tx_dpd)
- ccdf_min = 0
- ccdf_max = np.max(txframe_aligned_abs)
- tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs,
- bins=n_bins,
- range=(ccdf_min, ccdf_max))
- n_choise = np.min(tx_hist)
- tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
- rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
-
- for idx, bin in enumerate(tx_hist):
- indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) &
- (txframe_aligned_abs <= ccdf_edges[idx + 1]))[0]
- indices_choise = np.random.choice(indices,
- n_choise,
- replace=False)
- rx_choice[idx * n_choise:(idx + 1) * n_choise] = \
- rx_received[indices_choise]
- tx_choice[idx * n_choise:(idx + 1) * n_choise] = \
- tx_dpd[indices_choise]
-
- assert isinstance(rx_choice[0], np.complex64), \
- "rx_choice is not complex64 but {}".format(rx_choice[0].dtype)
- assert isinstance(tx_choice[0], np.complex64), \
- "tx_choice is not complex64 but {}".format(tx_choice[0].dtype)
-
- return tx_choice, rx_choice
-
- def dpd_amplitude(self, sig, coefs=None):
- if coefs is None:
- coefs = self.coefs_am
- assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
- sig_abs = np.abs(sig)
- A_sig = np.vstack([np.ones(sig_abs.shape),
- sig_abs ** 1,
- sig_abs ** 2,
- sig_abs ** 3,
- sig_abs ** 4,
- ]).T
- sig_dpd = sig * np.sum(A_sig * coefs, axis=1)
- return sig_dpd, A_sig
-
- def dpd_phase(self, sig, coefs=None):
- if coefs is None:
- coefs = self.coefs_pm
- assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
- sig_abs = np.abs(sig)
- A_phase = np.vstack([np.ones(sig_abs.shape),
- sig_abs ** 1,
- sig_abs ** 2,
- sig_abs ** 3,
- sig_abs ** 4,
- ]).T
- phase_diff_est = np.sum(A_phase * coefs, axis=1)
- return phase_diff_est, A_phase
-
- def _next_am_coefficent(self, tx_choice, rx_choice):
- """Calculate new coefficients for AM/AM correction"""
- rx_dpd, rx_A = self.dpd_amplitude(rx_choice)
- rx_dpd = rx_dpd * (
- np.median(np.abs(tx_choice)) /
- np.median(np.abs(rx_dpd)))
- err = np.abs(rx_dpd) - np.abs(tx_choice)
- mse = np.mean(np.abs((rx_dpd - tx_choice) ** 2))
- self.mses_am.append(mse)
- self.errs_am.append(np.mean(err**2))
-
- reg = linear_model.Ridge(alpha=0.00001)
- reg.fit(rx_A, err)
- a_delta = reg.coef_
- new_coefs_am = self.coefs_am - self.learning_rate_am * a_delta
- new_coefs_am = new_coefs_am * (self.coefs_am[0] / new_coefs_am[0])
- return new_coefs_am
-
- def _next_pm_coefficent(self, tx_choice, rx_choice):
- """Calculate new coefficients for AM/PM correction
- Assuming deviations smaller than pi/2"""
- phase_diff_choice = np.angle(
- (rx_choice * tx_choice.conjugate()) /
- (np.abs(rx_choice) * np.abs(tx_choice))
- )
- plt.hist(phase_diff_choice)
- plt.savefig('/tmp/hist_' + str(np.random.randint(0,1000)) + '.svg')
- plt.clf()
- phase_diff_est, phase_A = self.dpd_phase(rx_choice)
- err_phase = phase_diff_est - phase_diff_choice
- self.errs_pm.append(np.mean(np.abs(err_phase ** 2)))
-
- reg = linear_model.Ridge(alpha=0.00001)
- reg.fit(phase_A, err_phase)
- p_delta = reg.coef_
- new_coefs_pm = self.coefs_pm - self.learning_rate_pm * p_delta
-
- return new_coefs_pm, phase_diff_choice
-
- def get_next_coefs(self, tx_dpd, rx_received):
+ def train(self, tx_dpd, rx_received):
+ """Give new training data to the model"""
# Check data type
assert tx_dpd[0].dtype == np.complex64, \
"tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype)
@@ -164,7 +69,7 @@ class Model:
np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
assert normalization_error < 0.01, "Non normalized signals"
- tx_choice, rx_choice = self.sample_uniformly(tx_dpd, rx_received)
+ tx_choice, rx_choice = self._sample_uniformly(tx_dpd, rx_received)
new_coefs_am = self._next_am_coefficent(tx_choice, rx_choice)
new_coefs_pm, phase_diff_choice = self._next_pm_coefficent(tx_choice, rx_choice)
@@ -255,8 +160,8 @@ class Model:
ax = plt.subplot(4, 2, i_sub)
rx_range = np.linspace(0, 1, num=100, dtype=np.complex64)
- rx_range_dpd = self.dpd_amplitude(rx_range)[0]
- rx_range_dpd_new = self.dpd_amplitude(rx_range, new_coefs_am)[0]
+ rx_range_dpd = self._dpd_amplitude(rx_range)[0]
+ rx_range_dpd_new = self._dpd_amplitude(rx_range, new_coefs_am)[0]
i_sub += 1
ax.scatter(
np.abs(tx_choice),
@@ -284,8 +189,8 @@ class Model:
ax.set_ylabel("Coefficient Value")
phase_range = np.linspace(0, 1, num=100, dtype=np.complex64)
- phase_range_dpd = self.dpd_phase(phase_range)[0]
- phase_range_dpd_new = self.dpd_phase(phase_range,
+ phase_range_dpd = self._dpd_phase(phase_range)[0]
+ phase_range_dpd_new = self._dpd_phase(phase_range,
coefs=new_coefs_pm)[0]
ax = plt.subplot(4, 2, i_sub)
i_sub += 1
@@ -330,11 +235,139 @@ class Model:
self.coefs_am_history.append(self.coefs_am)
self.coefs_pm = new_coefs_pm
self.coefs_pm_history.append(self.coefs_pm)
- return self.coefs_am, self.coefs_pm
+
+ def get_dpd_data(self):
+ return "poly", self.coefs_am, self.coefs_pm
+
+ def _sample_uniformly(self, tx_dpd, rx_received, n_bins=5):
+ """This function returns tx and rx samples in a way
+ that the tx amplitudes have an approximate uniform
+ distribution with respect to the tx_dpd amplitudes"""
+ mask = np.logical_and((np.abs(tx_dpd) > 0.01), (np.abs(rx_received) > 0.01))
+ tx_dpd = tx_dpd[mask]
+ rx_received = rx_received[mask]
+
+ txframe_aligned_abs = np.abs(tx_dpd)
+ ccdf_min = 0
+ ccdf_max = np.max(txframe_aligned_abs)
+ tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs,
+ bins=n_bins,
+ range=(ccdf_min, ccdf_max))
+ n_choise = np.min(tx_hist)
+ tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
+ rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64)
+
+ for idx, bin in enumerate(tx_hist):
+ indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) &
+ (txframe_aligned_abs <= ccdf_edges[idx + 1]))[0]
+ indices_choise = np.random.choice(indices,
+ n_choise,
+ replace=False)
+ rx_choice[idx * n_choise:(idx + 1) * n_choise] = \
+ rx_received[indices_choise]
+ tx_choice[idx * n_choise:(idx + 1) * n_choise] = \
+ tx_dpd[indices_choise]
+
+ assert isinstance(rx_choice[0], np.complex64), \
+ "rx_choice is not complex64 but {}".format(rx_choice[0].dtype)
+ assert isinstance(tx_choice[0], np.complex64), \
+ "tx_choice is not complex64 but {}".format(tx_choice[0].dtype)
+
+ return tx_choice, rx_choice
+
+ def _dpd_amplitude(self, sig, coefs=None):
+ if coefs is None:
+ coefs = self.coefs_am
+ assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
+ sig_abs = np.abs(sig)
+ A_sig = np.vstack([np.ones(sig_abs.shape),
+ sig_abs ** 1,
+ sig_abs ** 2,
+ sig_abs ** 3,
+ sig_abs ** 4,
+ ]).T
+ sig_dpd = sig * np.sum(A_sig * coefs, axis=1)
+ return sig_dpd, A_sig
+
+ def _dpd_phase(self, sig, coefs=None):
+ if coefs is None:
+ coefs = self.coefs_pm
+ assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype)
+ sig_abs = np.abs(sig)
+ A_phase = np.vstack([np.ones(sig_abs.shape),
+ sig_abs ** 1,
+ sig_abs ** 2,
+ sig_abs ** 3,
+ sig_abs ** 4,
+ ]).T
+ phase_diff_est = np.sum(A_phase * coefs, axis=1)
+ return phase_diff_est, A_phase
+
+ def _next_am_coefficent(self, tx_choice, rx_choice):
+ """Calculate new coefficients for AM/AM correction"""
+ rx_dpd, rx_A = self._dpd_amplitude(rx_choice)
+ rx_dpd = rx_dpd * (
+ np.median(np.abs(tx_choice)) /
+ np.median(np.abs(rx_dpd)))
+ err = np.abs(rx_dpd) - np.abs(tx_choice)
+ mse = np.mean(np.abs((rx_dpd - tx_choice) ** 2))
+ self.mses_am.append(mse)
+ self.errs_am.append(np.mean(err**2))
+
+ reg = linear_model.Ridge(alpha=0.00001)
+ reg.fit(rx_A, err)
+ a_delta = reg.coef_
+ new_coefs_am = self.coefs_am - self.learning_rate_am * a_delta
+ new_coefs_am = new_coefs_am * (self.coefs_am[0] / new_coefs_am[0])
+ return new_coefs_am
+
+ def _next_pm_coefficent(self, tx_choice, rx_choice):
+ """Calculate new coefficients for AM/PM correction
+ Assuming deviations smaller than pi/2"""
+ phase_diff_choice = np.angle(
+ (rx_choice * tx_choice.conjugate()) /
+ (np.abs(rx_choice) * np.abs(tx_choice))
+ )
+ plt.hist(phase_diff_choice)
+ plt.savefig('/tmp/hist_' + str(np.random.randint(0,1000)) + '.svg')
+ plt.clf()
+ phase_diff_est, phase_A = self._dpd_phase(rx_choice)
+ err_phase = phase_diff_est - phase_diff_choice
+ self.errs_pm.append(np.mean(np.abs(err_phase ** 2)))
+
+ reg = linear_model.Ridge(alpha=0.00001)
+ reg.fit(phase_A, err_phase)
+ p_delta = reg.coef_
+ new_coefs_pm = self.coefs_pm - self.learning_rate_pm * p_delta
+
+ return new_coefs_pm, phase_diff_choice
+
+class LutModel:
+ """Implements a model that calculates lookup table coefficients"""
+
+ def __init__(self,
+ c,
+ SA,
+ MER,
+ learning_rate=1.,
+ plot=False):
+ logging.debug("Initialising LUT Model")
+ self.c = c
+ self.SA = SA
+ self.MER = MER
+ self.learning_rate = learning_rate
+ self.plot = plot
+
+ def train(self, tx_dpd, rx_received):
+ pass
+
+ def get_dpd_data(self):
+ return ("lut", np.ones(32, dtype=np.complex64))
# The MIT License (MIT)
#
# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2017 Matthias P. Braendli
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal