diff options
Diffstat (limited to 'dpd/src/Model.py')
-rw-r--r-- | dpd/src/Model.py | 259 |
1 files changed, 146 insertions, 113 deletions
diff --git a/dpd/src/Model.py b/dpd/src/Model.py index 827027a..a23f0ce 100644 --- a/dpd/src/Model.py +++ b/dpd/src/Model.py @@ -15,7 +15,7 @@ import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model -class Model: +class PolyModel: """Calculates new coefficients using the measurement and the old coefficients""" @@ -28,6 +28,7 @@ class Model: learning_rate_am=1., learning_rate_pm=1., plot=False): + logging.debug("Initialising Poly Model") self.c = c self.SA = SA self.MER = MER @@ -35,7 +36,10 @@ class Model: self.learning_rate_am = learning_rate_am self.learning_rate_pm = learning_rate_pm - self.coefs_am = coefs_am + if coefs_am is None: + self.coefs_am = [1.0, 0, 0, 0, 0] + else: + self.coefs_am = coefs_am self.coefs_am_history = [coefs_am, ] self.mses_am = [] self.errs_am = [] @@ -43,116 +47,17 @@ class Model: self.tx_mers = [] self.rx_mers = [] - self.coefs_pm = coefs_pm + if coefs_pm is None: + self.coefs_pm = [0, 0, 0, 0, 0] + else: + self.coefs_pm = coefs_pm self.coefs_pm_history = [coefs_pm, ] self.errs_pm = [] self.plot = plot - def sample_uniformly(self, tx_dpd, rx_received, n_bins=5): - """This function returns tx and rx samples in a way - that the tx amplitudes have an approximate uniform - distribution with respect to the tx_dpd amplitudes""" - mask = np.logical_and((np.abs(tx_dpd) > 0.01), (np.abs(rx_received) > 0.01)) - tx_dpd = tx_dpd[mask] - rx_received = rx_received[mask] - - txframe_aligned_abs = np.abs(tx_dpd) - ccdf_min = 0 - ccdf_max = np.max(txframe_aligned_abs) - tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs, - bins=n_bins, - range=(ccdf_min, ccdf_max)) - n_choise = np.min(tx_hist) - tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64) - rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64) - - for idx, bin in enumerate(tx_hist): - indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) & - (txframe_aligned_abs <= ccdf_edges[idx + 1]))[0] - indices_choise = np.random.choice(indices, - n_choise, - replace=False) - rx_choice[idx * n_choise:(idx + 1) * n_choise] = \ - rx_received[indices_choise] - tx_choice[idx * n_choise:(idx + 1) * n_choise] = \ - tx_dpd[indices_choise] - - assert isinstance(rx_choice[0], np.complex64), \ - "rx_choice is not complex64 but {}".format(rx_choice[0].dtype) - assert isinstance(tx_choice[0], np.complex64), \ - "tx_choice is not complex64 but {}".format(tx_choice[0].dtype) - - return tx_choice, rx_choice - - def dpd_amplitude(self, sig, coefs=None): - if coefs is None: - coefs = self.coefs_am - assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype) - sig_abs = np.abs(sig) - A_sig = np.vstack([np.ones(sig_abs.shape), - sig_abs ** 1, - sig_abs ** 2, - sig_abs ** 3, - sig_abs ** 4, - ]).T - sig_dpd = sig * np.sum(A_sig * coefs, axis=1) - return sig_dpd, A_sig - - def dpd_phase(self, sig, coefs=None): - if coefs is None: - coefs = self.coefs_pm - assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype) - sig_abs = np.abs(sig) - A_phase = np.vstack([np.ones(sig_abs.shape), - sig_abs ** 1, - sig_abs ** 2, - sig_abs ** 3, - sig_abs ** 4, - ]).T - phase_diff_est = np.sum(A_phase * coefs, axis=1) - return phase_diff_est, A_phase - - def _next_am_coefficent(self, tx_choice, rx_choice): - """Calculate new coefficients for AM/AM correction""" - rx_dpd, rx_A = self.dpd_amplitude(rx_choice) - rx_dpd = rx_dpd * ( - np.median(np.abs(tx_choice)) / - np.median(np.abs(rx_dpd))) - err = np.abs(rx_dpd) - np.abs(tx_choice) - mse = np.mean(np.abs((rx_dpd - tx_choice) ** 2)) - self.mses_am.append(mse) - self.errs_am.append(np.mean(err**2)) - - reg = linear_model.Ridge(alpha=0.00001) - reg.fit(rx_A, err) - a_delta = reg.coef_ - new_coefs_am = self.coefs_am - self.learning_rate_am * a_delta - new_coefs_am = new_coefs_am * (self.coefs_am[0] / new_coefs_am[0]) - return new_coefs_am - - def _next_pm_coefficent(self, tx_choice, rx_choice): - """Calculate new coefficients for AM/PM correction - Assuming deviations smaller than pi/2""" - phase_diff_choice = np.angle( - (rx_choice * tx_choice.conjugate()) / - (np.abs(rx_choice) * np.abs(tx_choice)) - ) - plt.hist(phase_diff_choice) - plt.savefig('/tmp/hist_' + str(np.random.randint(0,1000)) + '.svg') - plt.clf() - phase_diff_est, phase_A = self.dpd_phase(rx_choice) - err_phase = phase_diff_est - phase_diff_choice - self.errs_pm.append(np.mean(np.abs(err_phase ** 2))) - - reg = linear_model.Ridge(alpha=0.00001) - reg.fit(phase_A, err_phase) - p_delta = reg.coef_ - new_coefs_pm = self.coefs_pm - self.learning_rate_pm * p_delta - - return new_coefs_pm, phase_diff_choice - - def get_next_coefs(self, tx_dpd, rx_received): + def train(self, tx_dpd, rx_received): + """Give new training data to the model""" # Check data type assert tx_dpd[0].dtype == np.complex64, \ "tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype) @@ -164,7 +69,7 @@ class Model: np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received))) assert normalization_error < 0.01, "Non normalized signals" - tx_choice, rx_choice = self.sample_uniformly(tx_dpd, rx_received) + tx_choice, rx_choice = self._sample_uniformly(tx_dpd, rx_received) new_coefs_am = self._next_am_coefficent(tx_choice, rx_choice) new_coefs_pm, phase_diff_choice = self._next_pm_coefficent(tx_choice, rx_choice) @@ -255,8 +160,8 @@ class Model: ax = plt.subplot(4, 2, i_sub) rx_range = np.linspace(0, 1, num=100, dtype=np.complex64) - rx_range_dpd = self.dpd_amplitude(rx_range)[0] - rx_range_dpd_new = self.dpd_amplitude(rx_range, new_coefs_am)[0] + rx_range_dpd = self._dpd_amplitude(rx_range)[0] + rx_range_dpd_new = self._dpd_amplitude(rx_range, new_coefs_am)[0] i_sub += 1 ax.scatter( np.abs(tx_choice), @@ -284,8 +189,8 @@ class Model: ax.set_ylabel("Coefficient Value") phase_range = np.linspace(0, 1, num=100, dtype=np.complex64) - phase_range_dpd = self.dpd_phase(phase_range)[0] - phase_range_dpd_new = self.dpd_phase(phase_range, + phase_range_dpd = self._dpd_phase(phase_range)[0] + phase_range_dpd_new = self._dpd_phase(phase_range, coefs=new_coefs_pm)[0] ax = plt.subplot(4, 2, i_sub) i_sub += 1 @@ -330,11 +235,139 @@ class Model: self.coefs_am_history.append(self.coefs_am) self.coefs_pm = new_coefs_pm self.coefs_pm_history.append(self.coefs_pm) - return self.coefs_am, self.coefs_pm + + def get_dpd_data(self): + return "poly", self.coefs_am, self.coefs_pm + + def _sample_uniformly(self, tx_dpd, rx_received, n_bins=5): + """This function returns tx and rx samples in a way + that the tx amplitudes have an approximate uniform + distribution with respect to the tx_dpd amplitudes""" + mask = np.logical_and((np.abs(tx_dpd) > 0.01), (np.abs(rx_received) > 0.01)) + tx_dpd = tx_dpd[mask] + rx_received = rx_received[mask] + + txframe_aligned_abs = np.abs(tx_dpd) + ccdf_min = 0 + ccdf_max = np.max(txframe_aligned_abs) + tx_hist, ccdf_edges = np.histogram(txframe_aligned_abs, + bins=n_bins, + range=(ccdf_min, ccdf_max)) + n_choise = np.min(tx_hist) + tx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64) + rx_choice = np.zeros(n_choise * n_bins, dtype=np.complex64) + + for idx, bin in enumerate(tx_hist): + indices = np.where((txframe_aligned_abs >= ccdf_edges[idx]) & + (txframe_aligned_abs <= ccdf_edges[idx + 1]))[0] + indices_choise = np.random.choice(indices, + n_choise, + replace=False) + rx_choice[idx * n_choise:(idx + 1) * n_choise] = \ + rx_received[indices_choise] + tx_choice[idx * n_choise:(idx + 1) * n_choise] = \ + tx_dpd[indices_choise] + + assert isinstance(rx_choice[0], np.complex64), \ + "rx_choice is not complex64 but {}".format(rx_choice[0].dtype) + assert isinstance(tx_choice[0], np.complex64), \ + "tx_choice is not complex64 but {}".format(tx_choice[0].dtype) + + return tx_choice, rx_choice + + def _dpd_amplitude(self, sig, coefs=None): + if coefs is None: + coefs = self.coefs_am + assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype) + sig_abs = np.abs(sig) + A_sig = np.vstack([np.ones(sig_abs.shape), + sig_abs ** 1, + sig_abs ** 2, + sig_abs ** 3, + sig_abs ** 4, + ]).T + sig_dpd = sig * np.sum(A_sig * coefs, axis=1) + return sig_dpd, A_sig + + def _dpd_phase(self, sig, coefs=None): + if coefs is None: + coefs = self.coefs_pm + assert isinstance(sig[0], np.complex64), "Sig is not complex64 but {}".format(sig[0].dtype) + sig_abs = np.abs(sig) + A_phase = np.vstack([np.ones(sig_abs.shape), + sig_abs ** 1, + sig_abs ** 2, + sig_abs ** 3, + sig_abs ** 4, + ]).T + phase_diff_est = np.sum(A_phase * coefs, axis=1) + return phase_diff_est, A_phase + + def _next_am_coefficent(self, tx_choice, rx_choice): + """Calculate new coefficients for AM/AM correction""" + rx_dpd, rx_A = self._dpd_amplitude(rx_choice) + rx_dpd = rx_dpd * ( + np.median(np.abs(tx_choice)) / + np.median(np.abs(rx_dpd))) + err = np.abs(rx_dpd) - np.abs(tx_choice) + mse = np.mean(np.abs((rx_dpd - tx_choice) ** 2)) + self.mses_am.append(mse) + self.errs_am.append(np.mean(err**2)) + + reg = linear_model.Ridge(alpha=0.00001) + reg.fit(rx_A, err) + a_delta = reg.coef_ + new_coefs_am = self.coefs_am - self.learning_rate_am * a_delta + new_coefs_am = new_coefs_am * (self.coefs_am[0] / new_coefs_am[0]) + return new_coefs_am + + def _next_pm_coefficent(self, tx_choice, rx_choice): + """Calculate new coefficients for AM/PM correction + Assuming deviations smaller than pi/2""" + phase_diff_choice = np.angle( + (rx_choice * tx_choice.conjugate()) / + (np.abs(rx_choice) * np.abs(tx_choice)) + ) + plt.hist(phase_diff_choice) + plt.savefig('/tmp/hist_' + str(np.random.randint(0,1000)) + '.svg') + plt.clf() + phase_diff_est, phase_A = self._dpd_phase(rx_choice) + err_phase = phase_diff_est - phase_diff_choice + self.errs_pm.append(np.mean(np.abs(err_phase ** 2))) + + reg = linear_model.Ridge(alpha=0.00001) + reg.fit(phase_A, err_phase) + p_delta = reg.coef_ + new_coefs_pm = self.coefs_pm - self.learning_rate_pm * p_delta + + return new_coefs_pm, phase_diff_choice + +class LutModel: + """Implements a model that calculates lookup table coefficients""" + + def __init__(self, + c, + SA, + MER, + learning_rate=1., + plot=False): + logging.debug("Initialising LUT Model") + self.c = c + self.SA = SA + self.MER = MER + self.learning_rate = learning_rate + self.plot = plot + + def train(self, tx_dpd, rx_received): + pass + + def get_dpd_data(self): + return ("lut", np.ones(32, dtype=np.complex64)) # The MIT License (MIT) # # Copyright (c) 2017 Andreas Steger +# Copyright (c) 2017 Matthias P. Braendli # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal |