summaryrefslogtreecommitdiffstats
path: root/dpd/src/ExtractStatistic.py
diff options
context:
space:
mode:
Diffstat (limited to 'dpd/src/ExtractStatistic.py')
-rw-r--r--dpd/src/ExtractStatistic.py158
1 files changed, 158 insertions, 0 deletions
diff --git a/dpd/src/ExtractStatistic.py b/dpd/src/ExtractStatistic.py
new file mode 100644
index 0000000..8ae48ac
--- /dev/null
+++ b/dpd/src/ExtractStatistic.py
@@ -0,0 +1,158 @@
+# -*- coding: utf-8 -*-
+#
+# DPD Calculation Engine,
+# Extract statistic from data to use in Model
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import numpy as np
+import pickle
+import matplotlib.pyplot as plt
+
+import datetime
+import os
+import logging
+
+logging_path = os.path.dirname(logging.getLoggerClass().root.handlers[0].baseFilename)
+
+
+def _check_input_extract(tx_dpd, rx_received):
+ # Check data type
+ assert tx_dpd[0].dtype == np.complex64, \
+ "tx_dpd is not complex64 but {}".format(tx_dpd[0].dtype)
+ assert rx_received[0].dtype == np.complex64, \
+ "rx_received is not complex64 but {}".format(rx_received[0].dtype)
+ # Check if signals have same normalization
+ normalization_error = np.abs(np.median(np.abs(tx_dpd)) -
+ np.median(np.abs(rx_received))) / (
+ np.median(np.abs(tx_dpd)) + np.median(np.abs(rx_received)))
+ assert normalization_error < 0.01, "Non normalized signals"
+
+
+class ExtractStatistic:
+ """Calculate a low variance RX value for equally spaced tx values
+ of a predefined range"""
+
+ def __init__(self,
+ c,
+ plot=False):
+ self.c = c
+
+ self.tx_boundaries = np.linspace(c.ES_start, c.ES_end, c.ES_n_bins + 1)
+ self.n_per_bin = c.ES_n_per_bin
+
+ self.rx_values_lists = []
+ for i in range(c.ES_n_bins):
+ self.rx_values_lists.append([])
+
+ self.tx_values_lists = []
+ for i in range(c.ES_n_bins):
+ self.tx_values_lists.append([])
+
+ self.tx_values = self._tx_value_per_bin()
+ self.rx_values = []
+ for i in range(c.ES_n_bins):
+ self.rx_values.append(None)
+
+ self.plot = plot
+
+ def _plot_and_log(self):
+ if logging.getLogger().getEffectiveLevel() == logging.DEBUG and self.plot:
+ dt = datetime.datetime.now().isoformat()
+ fig_path = logging_path + "/" + dt + "_ExtractStatistic.png"
+ sub_rows = 2
+ sub_cols = 1
+ fig = plt.figure(figsize=(sub_cols * 6, sub_rows / 2. * 6))
+ i_sub = 0
+
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(self.tx_values, self.rx_values,
+ label="Estimated Values",
+ color="red")
+ for i, tx_value in enumerate(self.tx_values):
+ rx_values = self.rx_values_lists[i]
+ ax.scatter(np.ones(len(rx_values)) * tx_value,
+ np.abs(rx_values),
+ s=0.1,
+ color="black")
+ ax.set_title("Extracted Statistic")
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("RX Amplitude")
+ ax.set_ylim(0, 0.8)
+ ax.set_xlim(0, 1.1)
+ ax.legend(loc=4)
+
+ num = []
+ for i, tx_value in enumerate(self.tx_values):
+ rx_values = self.rx_values_lists[i]
+ num.append(len(rx_values))
+ i_sub += 1
+ ax = plt.subplot(sub_rows, sub_cols, i_sub)
+ ax.plot(num)
+ ax.set_xlabel("TX Amplitude")
+ ax.set_ylabel("Number of Samples")
+ ax.set_ylim(0, self.n_per_bin * 1.2)
+
+ fig.tight_layout()
+ fig.savefig(fig_path)
+ fig.clf()
+
+ pickle.dump(self.rx_values_lists, open("/tmp/rx_values", "wb"))
+ pickle.dump(self.tx_values, open("/tmp/tx_values", "wb"))
+
+ def _rx_value_per_bin(self):
+ rx_values = []
+ for values in self.rx_values_lists:
+ rx_values.append(np.mean(np.abs(values)))
+ return rx_values
+
+ def _tx_value_per_bin(self):
+ tx_values = []
+ for start, end in zip(self.tx_boundaries, self.tx_boundaries[1:]):
+ tx_values.append(np.mean((start, end)))
+ return tx_values
+
+ def extract(self, tx_dpd, rx):
+ _check_input_extract(tx_dpd, rx)
+
+ tx_abs = np.abs(tx_dpd)
+ for i, (tx_start, tx_end) in enumerate(zip(self.tx_boundaries, self.tx_boundaries[1:])):
+ mask = (tx_abs > tx_start) & (tx_abs < tx_end)
+ n_add = max(0, self.n_per_bin - len(self.rx_values_lists[i]))
+ self.rx_values_lists[i] += \
+ list(rx[mask][:n_add])
+ self.tx_values_lists[i] += \
+ list(tx_dpd[mask][:n_add])
+
+ self.rx_values = self._rx_value_per_bin()
+ self.tx_values = self._tx_value_per_bin()
+
+ self._plot_and_log()
+
+ n_per_bin = [len(values) for values in self.rx_values_lists]
+
+ return np.array(self.tx_values, dtype=np.float32), np.array(self.rx_values, dtype=np.float32), n_per_bin
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.