summaryrefslogtreecommitdiffstats
path: root/dpd/src/Dab_Util.py
diff options
context:
space:
mode:
Diffstat (limited to 'dpd/src/Dab_Util.py')
-rw-r--r--dpd/src/Dab_Util.py93
1 files changed, 93 insertions, 0 deletions
diff --git a/dpd/src/Dab_Util.py b/dpd/src/Dab_Util.py
new file mode 100644
index 0000000..73ae852
--- /dev/null
+++ b/dpd/src/Dab_Util.py
@@ -0,0 +1,93 @@
+import numpy as np
+import scipy
+import matplotlib.pyplot as plt
+import src.subsample_align as sa
+from scipy import signal
+import logging
+
+class Dab_Util:
+ """Collection of methods that can be applied to an array
+ complex IQ samples of a DAB signal
+ """
+ def __init__(self, sample_rate):
+ """
+ :param sample_rate: sample rate [sample/sec] to use for calculations
+ """
+ self.sample_rate = sample_rate
+ self.dab_bandwidth = 1536000 #Bandwidth of a dab signal
+ self.frame_ms = 96 #Duration of a Dab frame
+
+ def lag(self, sig_orig, sig_rec):
+ """
+ Find lag between two signals
+ Args:
+ sig_orig: The signal that has been sent
+ sig_rec: The signal that has been recored
+ """
+ off = sig_rec.shape[0]
+ c = signal.correlate(sig_orig, sig_rec)
+ return np.argmax(c) - off + 1
+
+ def lag_upsampling(self, sig_orig, sig_rec, n_up):
+ sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up)
+ sig_rec_up = signal.resample(sig_rec, sig_rec.shape[0] * n_up)
+ l = self.lag(sig_orig_up, sig_rec_up)
+ l_orig = float(l) / n_up
+ return l_orig
+
+ def subsample_align_upsampling(self, sig1, sig2, n_up=32):
+ """
+ Returns an aligned version of sig1 and sig2 by cropping and subsample alignment
+ Using upsampling
+ """
+ assert(sig1.shape[0] == sig2.shape[0])
+
+ if sig1.shape[0] % 2 == 1:
+ sig1 = sig1[:-1]
+ sig2 = sig2[:-1]
+
+ sig1_up = signal.resample(sig1, sig1.shape[0] * n_up)
+ sig2_up = signal.resample(sig2, sig2.shape[0] * n_up)
+
+ off_meas = self.lag_upsampling(sig2_up, sig1_up, n_up=1)
+ off = int(abs(off_meas))
+
+ if off_meas > 0:
+ sig1_up = sig1_up[:-off]
+ sig2_up = sig2_up[off:]
+ elif off_meas < 0:
+ sig1_up = sig1_up[off:]
+ sig2_up = sig2_up[:-off]
+
+ sig1 = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64)
+ sig2 = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64)
+ return sig1, sig2
+
+ def subsample_align(self, sig1, sig2):
+ """
+ Returns an aligned version of sig1 and sig2 by cropping and subsample alignment
+ """
+ logging.debug("Sig1_orig: %d %s, Sig2_orig: %d %s" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype))
+ off_meas = self.lag_upsampling(sig2, sig1, n_up=1)
+ off = int(abs(off_meas))
+
+ if off_meas > 0:
+ sig1 = sig1[:-off]
+ sig2 = sig2[off:]
+ elif off_meas < 0:
+ sig1 = sig1[off:]
+ sig2 = sig2[:-off]
+
+ if off % 2 == 1:
+ sig1 = sig1[:-1]
+ sig2 = sig2[:-1]
+
+ sig2 = sa.subsample_align(sig2, sig1)
+ logging.debug("Sig1_cut: %d %s, Sig2_cut: %d %s, off: %d" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype, off))
+ return sig1, sig2
+
+ def fromfile(self, filename, offset=0, length=None):
+ if length is None:
+ return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset)
+ else:
+ return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset, shape=length)