diff options
Diffstat (limited to 'dpd/src/Dab_Util.py')
-rw-r--r-- | dpd/src/Dab_Util.py | 93 |
1 files changed, 93 insertions, 0 deletions
diff --git a/dpd/src/Dab_Util.py b/dpd/src/Dab_Util.py new file mode 100644 index 0000000..73ae852 --- /dev/null +++ b/dpd/src/Dab_Util.py @@ -0,0 +1,93 @@ +import numpy as np +import scipy +import matplotlib.pyplot as plt +import src.subsample_align as sa +from scipy import signal +import logging + +class Dab_Util: + """Collection of methods that can be applied to an array + complex IQ samples of a DAB signal + """ + def __init__(self, sample_rate): + """ + :param sample_rate: sample rate [sample/sec] to use for calculations + """ + self.sample_rate = sample_rate + self.dab_bandwidth = 1536000 #Bandwidth of a dab signal + self.frame_ms = 96 #Duration of a Dab frame + + def lag(self, sig_orig, sig_rec): + """ + Find lag between two signals + Args: + sig_orig: The signal that has been sent + sig_rec: The signal that has been recored + """ + off = sig_rec.shape[0] + c = signal.correlate(sig_orig, sig_rec) + return np.argmax(c) - off + 1 + + def lag_upsampling(self, sig_orig, sig_rec, n_up): + sig_orig_up = signal.resample(sig_orig, sig_orig.shape[0] * n_up) + sig_rec_up = signal.resample(sig_rec, sig_rec.shape[0] * n_up) + l = self.lag(sig_orig_up, sig_rec_up) + l_orig = float(l) / n_up + return l_orig + + def subsample_align_upsampling(self, sig1, sig2, n_up=32): + """ + Returns an aligned version of sig1 and sig2 by cropping and subsample alignment + Using upsampling + """ + assert(sig1.shape[0] == sig2.shape[0]) + + if sig1.shape[0] % 2 == 1: + sig1 = sig1[:-1] + sig2 = sig2[:-1] + + sig1_up = signal.resample(sig1, sig1.shape[0] * n_up) + sig2_up = signal.resample(sig2, sig2.shape[0] * n_up) + + off_meas = self.lag_upsampling(sig2_up, sig1_up, n_up=1) + off = int(abs(off_meas)) + + if off_meas > 0: + sig1_up = sig1_up[:-off] + sig2_up = sig2_up[off:] + elif off_meas < 0: + sig1_up = sig1_up[off:] + sig2_up = sig2_up[:-off] + + sig1 = signal.resample(sig1_up, sig1_up.shape[0] / n_up).astype(np.complex64) + sig2 = signal.resample(sig2_up, sig2_up.shape[0] / n_up).astype(np.complex64) + return sig1, sig2 + + def subsample_align(self, sig1, sig2): + """ + Returns an aligned version of sig1 and sig2 by cropping and subsample alignment + """ + logging.debug("Sig1_orig: %d %s, Sig2_orig: %d %s" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype)) + off_meas = self.lag_upsampling(sig2, sig1, n_up=1) + off = int(abs(off_meas)) + + if off_meas > 0: + sig1 = sig1[:-off] + sig2 = sig2[off:] + elif off_meas < 0: + sig1 = sig1[off:] + sig2 = sig2[:-off] + + if off % 2 == 1: + sig1 = sig1[:-1] + sig2 = sig2[:-1] + + sig2 = sa.subsample_align(sig2, sig1) + logging.debug("Sig1_cut: %d %s, Sig2_cut: %d %s, off: %d" % (len(sig1), sig1.dtype, len(sig2), sig2.dtype, off)) + return sig1, sig2 + + def fromfile(self, filename, offset=0, length=None): + if length is None: + return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset) + else: + return np.memmap(filename, dtype=np.complex64, mode='r', offset=64/8*offset, shape=length) |