summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xdpd/store_received.py157
1 files changed, 157 insertions, 0 deletions
diff --git a/dpd/store_received.py b/dpd/store_received.py
new file mode 100755
index 0000000..902f607
--- /dev/null
+++ b/dpd/store_received.py
@@ -0,0 +1,157 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+#
+# This is an example tool that shows how to connect to ODR-DabMod's dpd TCP server
+# and get samples from there.
+#
+# Since the TX and RX samples are not perfectly aligned, the tool has to align them properly,
+# which is done in two steps: First on sample-level using a correlation, then with subsample
+# accuracy using a FFT approach.
+#
+# It requires SciPy and matplotlib.
+#
+# Copyright (C) 2017 Matthias P. Braendli
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+import sys
+import socket
+import struct
+import numpy as np
+import matplotlib.pyplot as pp
+from matplotlib.animation import FuncAnimation
+import argparse
+import os
+import time
+import src.dab_util as du
+
+SIZEOF_SAMPLE = 8 # complex floats
+
+def main():
+ parser = argparse.ArgumentParser(description="Plot the spectrum of ODR-DabMod's DPD feedback")
+ parser.add_argument('--samps', default='10240', help='Number of samples to request at once',
+ required=False)
+ parser.add_argument('--port', default='50055',
+ help='port to connect to ODR-DabMod DPD (default: 50055)',
+ required=False)
+ parser.add_argument('--out_dir', default='/tmp/record', help='Output directory',
+ required=False)
+ parser.add_argument('--count', default='1', help='Number of recordings',
+ required=False)
+ parser.add_argument('--verbose', type=int, default=0, help='Level of verbosity',
+ required=False)
+
+ parser.add_argument('--animated', action='store_true', help='Enable real-time animation')
+
+
+ cli_args = parser.parse_args()
+
+ if not os.path.isdir(cli_args.out_dir):
+ os.mkdir(cli_args.out_dir)
+
+ port = int(cli_args.port)
+ num_samps_to_request = int(cli_args.samps)
+
+ for i in range(int(cli_args.count)):
+ if i>0:
+ time.sleep(0.1)
+
+ tx_ts, txframe, rx_ts, rxframe = get_samples(port, num_samps_to_request)
+
+ txframe_aligned, rxframe_aligned = du.subsample_align(txframe, rxframe)
+
+ if cli_args.verbose >= 1:
+ n_up = 32
+ lag = du.lag_upsampling(txframe, rxframe, n_up)
+ lag_aligned = du.lag_upsampling(txframe_aligned, rxframe_aligned, n_up)
+ print("Lag from %d times oversampled signal:" % n_up)
+ print("Before alignment: %.2f" % lag)
+ print("After alignment: %.2f" % lag_aligned)
+ print("")
+
+ txframe_aligned.tofile("%s/%d_tx_record.iq" % (cli_args.out_dir, i))
+ rxframe_aligned.tofile("%s/%d_rx_record.iq" % (cli_args.out_dir, i))
+
+
+def recv_exact(sock, num_bytes):
+ bufs = []
+ while num_bytes > 0:
+ b = sock.recv(num_bytes)
+ if len(b) == 0:
+ break
+ num_bytes -= len(b)
+ bufs.append(b)
+ return b''.join(bufs)
+
+def get_samples(port, num_samps_to_request):
+ """Connect to ODR-DabMod, retrieve TX and RX samples, load
+ into numpy arrays, and return a tuple
+ (tx_timestamp, tx_samples, rx_timestamp, rx_samples)
+ where the timestamps are doubles, and the samples are numpy
+ arrays of complex floats, both having the same size
+ """
+
+ s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
+ s.connect(('localhost', port))
+
+ print("Send version");
+ s.sendall(b"\x01")
+
+ print("Send request for {} samples".format(num_samps_to_request))
+ s.sendall(struct.pack("=I", num_samps_to_request))
+
+ print("Wait for TX metadata")
+ num_samps, tx_second, tx_pps = struct.unpack("=III", recv_exact(s, 12))
+ tx_ts = tx_second + tx_pps / 16384000.0
+
+ if num_samps > 0:
+ print("Receiving {} TX samples".format(num_samps))
+ txframe_bytes = recv_exact(s, num_samps * SIZEOF_SAMPLE)
+ txframe = np.fromstring(txframe_bytes, dtype=np.complex64)
+ else:
+ txframe = np.array([], dtype=np.complex64)
+
+ print("Wait for RX metadata")
+ rx_second, rx_pps = struct.unpack("=II", recv_exact(s, 8))
+ rx_ts = rx_second + rx_pps / 16384000.0
+
+ if num_samps > 0:
+ print("Receiving {} RX samples".format(num_samps))
+ rxframe_bytes = recv_exact(s, num_samps * SIZEOF_SAMPLE)
+ rxframe = np.fromstring(rxframe_bytes, dtype=np.complex64)
+ else:
+ rxframe = np.array([], dtype=np.complex64)
+
+ print("Disconnecting")
+ s.close()
+
+ return (tx_ts, txframe, rx_ts, rxframe)
+
+
+sampling_rate = 8192000
+fft_size = 4096
+freqs = np.fft.fftshift(np.fft.fftfreq(fft_size, d=1./sampling_rate))
+
+main()
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Matthias P. Braendli
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.