summaryrefslogtreecommitdiffstats
path: root/python/dpdce.py
diff options
context:
space:
mode:
authorMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 16:45:58 +0100
committerMatthias P. Braendli <matthias.braendli@mpb.li>2018-12-04 16:45:58 +0100
commit5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9 (patch)
treea7edc1dfd2b2f4469f4dc4d760fdfa83a25fa710 /python/dpdce.py
parentd5cbe10c0e2298b0e40161607a3da158249bdb82 (diff)
downloaddabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.tar.gz
dabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.tar.bz2
dabmod-5cf52c74e9eb6bf8a82af4509ff3eb5106f928f9.zip
Rework GUI and DPDCE
Diffstat (limited to 'python/dpdce.py')
-rwxr-xr-xpython/dpdce.py337
1 files changed, 337 insertions, 0 deletions
diff --git a/python/dpdce.py b/python/dpdce.py
new file mode 100755
index 0000000..da1b6fb
--- /dev/null
+++ b/python/dpdce.py
@@ -0,0 +1,337 @@
+#!/usr/bin/env python
+# -*- coding: utf-8 -*-
+#
+# DPD Computation Engine standalone main file.
+#
+# http://www.opendigitalradio.org
+# Licence: The MIT License, see notice at the end of this file
+
+"""This Python script is the main file for ODR-DabMod's DPD Computation Engine running
+in server mode.
+
+This engine calculates and updates the parameter of the digital
+predistortion module of ODR-DabMod."""
+
+import sys
+import os
+import argparse
+import configparser
+import matplotlib
+matplotlib.use('Agg')
+
+parser = argparse.ArgumentParser(
+ description="DPD Computation Engine for ODR-DabMod")
+parser.add_argument('--config', default="gui-dpdce.ini", type=str,
+ help='Location of configuration filename (default: gui-dpdce.ini)',
+ required=False)
+parser.add_argument('-s', '--status', action="store_true",
+ help='Display the currently running DPD settings.')
+parser.add_argument('-r', '--reset', action="store_true",
+ help='Reset the DPD settings to the defaults, and set digital gain to 0.01')
+
+cli_args = parser.parse_args()
+allconfig = configparser.ConfigParser()
+allconfig.read(cli_args.config)
+config = allconfig['dpdce']
+
+# removed options:
+# txgain, rxgain, digital_gain, target_median, iterations, lut, enable-txgain-agc, plot, measure
+
+control_port = config['control_port']
+dpd_port = config['dpd_port']
+rc_port = config['rc_port']
+samplerate = config['samplerate']
+samps = config['samps']
+coef_file = config['coef_file']
+log_folder = config['log_folder']
+
+import logging
+import datetime
+
+save_logs = False
+
+# Simple usage scenarios don't need to clutter /tmp
+if save_logs:
+ dt = datetime.datetime.now().isoformat()
+ logging_path = '/tmp/dpd_{}'.format(dt).replace('.', '_').replace(':', '-')
+ print("Logs and plots written to {}".format(logging_path))
+ os.makedirs(logging_path)
+ logging.basicConfig(format='%(asctime)s - %(module)s - %(levelname)s - %(message)s',
+ datefmt='%Y-%m-%d %H:%M:%S',
+ filename='{}/dpd.log'.format(logging_path),
+ filemode='w',
+ level=logging.DEBUG)
+ # also log up to INFO to console
+ console = logging.StreamHandler()
+ console.setLevel(logging.INFO)
+ # set a format which is simpler for console use
+ formatter = logging.Formatter('%(asctime)s - %(module)s - %(levelname)s - %(message)s')
+ # tell the handler to use this format
+ console.setFormatter(formatter)
+ # add the handler to the root logger
+ logging.getLogger('').addHandler(console)
+else:
+ dt = datetime.datetime.now().isoformat()
+ logging.basicConfig(format='%(asctime)s - %(module)s - %(levelname)s - %(message)s',
+ datefmt='%Y-%m-%d %H:%M:%S',
+ level=logging.INFO)
+ logging_path = ""
+
+logging.info("DPDCE starting up");
+
+import socket
+from lib import yamlrpc
+import numpy as np
+import traceback
+from threading import Thread, Lock
+from queue import Queue
+from dpd.Model import Poly
+import dpd.Heuristics as Heuristics
+from dpd.Measure import Measure
+from dpd.ExtractStatistic import ExtractStatistic
+from dpd.Adapt import Adapt, dpddata_to_str
+from dpd.RX_Agc import Agc
+from dpd.Symbol_align import Symbol_align
+from dpd.GlobalConfig import GlobalConfig
+from dpd.MER import MER
+from dpd.Measure_Shoulders import Measure_Shoulders
+
+c = GlobalConfig(config, logging_path)
+symbol_align = Symbol_align(c)
+mer = MER(c)
+meas_shoulders = Measure_Shoulders(c)
+meas = Measure(c, samplerate, dpd_port, samps)
+extStat = ExtractStatistic(c)
+adapt = Adapt(rc_port, coef_file, logging_path)
+
+model = Poly(c)
+
+# Do not touch settings on startup
+tx_gain = adapt.get_txgain()
+rx_gain = adapt.get_rxgain()
+digital_gain = adapt.get_digital_gain()
+dpddata = adapt.get_predistorter()
+
+logging.info("ODR-DabMod currently running with TXGain {}, RXGain {}, digital gain {} and {}".format(
+ tx_gain, rx_gain, digital_gain, dpddata_to_str(dpddata)))
+
+if cli_args.status:
+ sys.exit(0)
+
+if cli_args.reset:
+ adapt.set_digital_gain(0.01)
+ adapt.set_rxgain(0)
+ adapt.set_predistorter(model.get_dpd_data())
+ logging.info("DPD Settings were reset to default values.")
+ sys.exit(0)
+
+cmd_socket = yamlrpc.Socket(bind_port=config.getint(control_port))
+
+# The following is accessed by both threads and need to be locked
+settings = {
+ 'rx_gain': rx_gain,
+ 'tx_gain': tx_gain,
+ 'digital_gain': digital_gain,
+ 'dpddata': dpddata,
+ }
+results = {
+ 'tx_median': 0,
+ 'rx_median': 0,
+ 'state': 'idle',
+ }
+lock = Lock()
+command_queue = Queue(maxsize=1)
+
+# Automatic Gain Control for the RX gain
+agc = Agc(meas, adapt, c)
+
+def engine_worker():
+ try:
+ while True:
+ cmd = command_queue.get()
+
+ if cmd == "quit":
+ break
+ elif cmd == "calibrate":
+ with lock:
+ results['state'] = 'rx agc'
+
+ agc.run()
+
+ txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median = self.measure.get_samples()
+
+ with lock:
+ settings['rx_gain'] = adapt.get_rxgain()
+ settings['digital_gain'] = adapt.get_digital_gain()
+ results['tx_median'] = tx_median
+ results['rx_median'] = rx_median
+ results['state'] = 'idle'
+
+ finally:
+ with lock:
+ results['state'] = 'terminated'
+
+
+engine = Thread(target=engine_worker)
+engine.start()
+
+try:
+ while True:
+ addr, msg_id, method, params = cmd_socket.receive_request()
+
+ if method == 'get_settings':
+ with lock:
+ cmd_socket.send_success_response(addr, msg_id, settings)
+ elif method == 'get_results':
+ with lock:
+ cmd_socket.send_success_response(addr, msg_id, results)
+ elif method == 'calibrate':
+ command_queue.put('calibrate')
+ else:
+ cmd_socket.send_error_response(addr, msg_id, "request not understood")
+finally:
+ command_queue.put('quit')
+ engine.join()
+
+# Make code below unreachable
+sys.exit(0)
+
+def measure_once():
+ txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median = meas.get_samples()
+
+ print("TX signal median {}".format(np.median(np.abs(txframe_aligned))))
+ print("RX signal median {}".format(rx_median))
+
+ tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned)
+
+ off = symbol_align.calc_offset(txframe_aligned)
+ print("off {}".format(off))
+ tx_mer = mer.calc_mer(txframe_aligned[off:off + c.T_U], debug_name='TX')
+ print("tx_mer {}".format(tx_mer))
+ rx_mer = mer.calc_mer(rxframe_aligned[off:off + c.T_U], debug_name='RX')
+ print("rx_mer {}".format(rx_mer))
+
+ mse = np.mean(np.abs((txframe_aligned - rxframe_aligned) ** 2))
+ print("mse {}".format(mse))
+
+ digital_gain = adapt.get_digital_gain()
+ print("digital_gain {}".format(digital_gain))
+
+ #rx_shoulder_tuple = meas_shoulders.average_shoulders(rxframe_aligned)
+ #tx_shoulder_tuple = meas_shoulders.average_shoulders(txframe_aligned)
+
+state = 'report'
+i = 0
+n_meas = None
+num_iter = 10
+while i < num_iter:
+ try:
+ # Measure
+ if state == 'measure':
+ # Get Samples and check gain
+ txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median = meas.get_samples()
+ # TODO Check TX median
+
+ # Extract usable data from measurement
+ tx, rx, phase_diff, n_per_bin = extStat.extract(txframe_aligned, rxframe_aligned)
+
+ n_meas = Heuristics.get_n_meas(i)
+ if extStat.n_meas >= n_meas: # Use as many measurements nr of runs
+ state = 'model'
+ else:
+ state = 'measure'
+
+ # Model
+ elif state == 'model':
+ # Calculate new model parameters and delete old measurements
+ if any(x is None for x in [tx, rx, phase_diff]):
+ logging.error("No data to calculate model")
+ state = 'measure'
+ continue
+
+ model.train(tx, rx, phase_diff, lr=Heuristics.get_learning_rate(i))
+ dpddata = model.get_dpd_data()
+ extStat = ExtractStatistic(c)
+ state = 'adapt'
+
+ # Adapt
+ elif state == 'adapt':
+ adapt.set_predistorter(dpddata)
+ state = 'report'
+
+ # Report
+ elif state == 'report':
+ try:
+ txframe_aligned, tx_ts, rxframe_aligned, rx_ts, rx_median = meas.get_samples()
+
+ # Store all settings for pre-distortion, tx and rx
+ adapt.dump()
+
+ # Collect logging data
+ off = symbol_align.calc_offset(txframe_aligned)
+ tx_mer = mer.calc_mer(txframe_aligned[off:off + c.T_U], debug_name='TX')
+ rx_mer = mer.calc_mer(rxframe_aligned[off:off + c.T_U], debug_name='RX')
+ mse = np.mean(np.abs((txframe_aligned - rxframe_aligned) ** 2))
+ tx_gain = adapt.get_txgain()
+ rx_gain = adapt.get_rxgain()
+ digital_gain = adapt.get_digital_gain()
+ tx_median = np.median(np.abs(txframe_aligned))
+ rx_shoulder_tuple = meas_shoulders.average_shoulders(rxframe_aligned)
+ tx_shoulder_tuple = meas_shoulders.average_shoulders(txframe_aligned)
+
+ lr = Heuristics.get_learning_rate(i)
+
+ # Generic logging
+ logging.info(list((name, eval(name)) for name in
+ ['i', 'tx_mer', 'tx_shoulder_tuple', 'rx_mer',
+ 'rx_shoulder_tuple', 'mse', 'tx_gain',
+ 'digital_gain', 'rx_gain', 'rx_median',
+ 'tx_median', 'lr', 'n_meas']))
+
+ # Model specific logging
+ if dpddata[0] == 'poly':
+ coefs_am = dpddata[1]
+ coefs_pm = dpddata[2]
+ logging.info('It {}: coefs_am {}'.
+ format(i, coefs_am))
+ logging.info('It {}: coefs_pm {}'.
+ format(i, coefs_pm))
+ elif dpddata[0] == 'lut':
+ scalefactor = dpddata[1]
+ lut = dpddata[2]
+ logging.info('It {}: LUT scalefactor {}, LUT {}'.
+ format(i, scalefactor, lut))
+ except:
+ logging.error('Iteration {}: Report failed.'.format(i))
+ logging.error(traceback.format_exc())
+ i += 1
+ state = 'measure'
+
+ except:
+ logging.error('Iteration {} failed.'.format(i))
+ logging.error(traceback.format_exc())
+ i += 1
+ state = 'measure'
+
+# The MIT License (MIT)
+#
+# Copyright (c) 2017 Andreas Steger
+# Copyright (c) 2018 Matthias P. Braendli
+#
+# Permission is hereby granted, free of charge, to any person obtaining a copy
+# of this software and associated documentation files (the "Software"), to deal
+# in the Software without restriction, including without limitation the rights
+# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+# copies of the Software, and to permit persons to whom the Software is
+# furnished to do so, subject to the following conditions:
+#
+# The above copyright notice and this permission notice shall be included in all
+# copies or substantial portions of the Software.
+#
+# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+# SOFTWARE.